Step |
Hyp |
Ref |
Expression |
1 |
|
lcmineqlem14.1 |
|- ( ph -> A e. NN ) |
2 |
|
lcmineqlem14.2 |
|- ( ph -> B e. NN ) |
3 |
|
lcmineqlem14.3 |
|- ( ph -> C e. NN ) |
4 |
|
lcmineqlem14.4 |
|- ( ph -> D e. NN ) |
5 |
|
lcmineqlem14.5 |
|- ( ph -> E e. NN ) |
6 |
|
lcmineqlem14.6 |
|- ( ph -> ( A x. C ) || D ) |
7 |
|
lcmineqlem14.7 |
|- ( ph -> ( B x. C ) || E ) |
8 |
|
lcmineqlem14.8 |
|- ( ph -> D || E ) |
9 |
|
lcmineqlem14.9 |
|- ( ph -> ( A gcd B ) = 1 ) |
10 |
1
|
nnzd |
|- ( ph -> A e. ZZ ) |
11 |
2
|
nnzd |
|- ( ph -> B e. ZZ ) |
12 |
2 3 5
|
nnproddivdvdsd |
|- ( ph -> ( ( B x. C ) || E <-> B || ( E / C ) ) ) |
13 |
7 12
|
mpbid |
|- ( ph -> B || ( E / C ) ) |
14 |
|
dvdszrcl |
|- ( B || ( E / C ) -> ( B e. ZZ /\ ( E / C ) e. ZZ ) ) |
15 |
13 14
|
syl |
|- ( ph -> ( B e. ZZ /\ ( E / C ) e. ZZ ) ) |
16 |
15
|
simprd |
|- ( ph -> ( E / C ) e. ZZ ) |
17 |
3
|
nnzd |
|- ( ph -> C e. ZZ ) |
18 |
10 17
|
zmulcld |
|- ( ph -> ( A x. C ) e. ZZ ) |
19 |
4
|
nnzd |
|- ( ph -> D e. ZZ ) |
20 |
5
|
nnzd |
|- ( ph -> E e. ZZ ) |
21 |
18 19 20 6 8
|
dvdstrd |
|- ( ph -> ( A x. C ) || E ) |
22 |
1 3 5
|
nnproddivdvdsd |
|- ( ph -> ( ( A x. C ) || E <-> A || ( E / C ) ) ) |
23 |
21 22
|
mpbid |
|- ( ph -> A || ( E / C ) ) |
24 |
10 11 16 9 23 13
|
coprmdvds2d |
|- ( ph -> ( A x. B ) || ( E / C ) ) |
25 |
1 2
|
nnmulcld |
|- ( ph -> ( A x. B ) e. NN ) |
26 |
25 3 5
|
nnproddivdvdsd |
|- ( ph -> ( ( ( A x. B ) x. C ) || E <-> ( A x. B ) || ( E / C ) ) ) |
27 |
24 26
|
mpbird |
|- ( ph -> ( ( A x. B ) x. C ) || E ) |