Metamath Proof Explorer


Theorem lcmineqlem14

Description: Technical lemma for inequality estimate. (Contributed by metakunt, 12-May-2024)

Ref Expression
Hypotheses lcmineqlem14.1
|- ( ph -> A e. NN )
lcmineqlem14.2
|- ( ph -> B e. NN )
lcmineqlem14.3
|- ( ph -> C e. NN )
lcmineqlem14.4
|- ( ph -> D e. NN )
lcmineqlem14.5
|- ( ph -> E e. NN )
lcmineqlem14.6
|- ( ph -> ( A x. C ) || D )
lcmineqlem14.7
|- ( ph -> ( B x. C ) || E )
lcmineqlem14.8
|- ( ph -> D || E )
lcmineqlem14.9
|- ( ph -> ( A gcd B ) = 1 )
Assertion lcmineqlem14
|- ( ph -> ( ( A x. B ) x. C ) || E )

Proof

Step Hyp Ref Expression
1 lcmineqlem14.1
 |-  ( ph -> A e. NN )
2 lcmineqlem14.2
 |-  ( ph -> B e. NN )
3 lcmineqlem14.3
 |-  ( ph -> C e. NN )
4 lcmineqlem14.4
 |-  ( ph -> D e. NN )
5 lcmineqlem14.5
 |-  ( ph -> E e. NN )
6 lcmineqlem14.6
 |-  ( ph -> ( A x. C ) || D )
7 lcmineqlem14.7
 |-  ( ph -> ( B x. C ) || E )
8 lcmineqlem14.8
 |-  ( ph -> D || E )
9 lcmineqlem14.9
 |-  ( ph -> ( A gcd B ) = 1 )
10 1 nnzd
 |-  ( ph -> A e. ZZ )
11 2 nnzd
 |-  ( ph -> B e. ZZ )
12 2 3 5 nnproddivdvdsd
 |-  ( ph -> ( ( B x. C ) || E <-> B || ( E / C ) ) )
13 7 12 mpbid
 |-  ( ph -> B || ( E / C ) )
14 dvdszrcl
 |-  ( B || ( E / C ) -> ( B e. ZZ /\ ( E / C ) e. ZZ ) )
15 13 14 syl
 |-  ( ph -> ( B e. ZZ /\ ( E / C ) e. ZZ ) )
16 15 simprd
 |-  ( ph -> ( E / C ) e. ZZ )
17 3 nnzd
 |-  ( ph -> C e. ZZ )
18 10 17 zmulcld
 |-  ( ph -> ( A x. C ) e. ZZ )
19 4 nnzd
 |-  ( ph -> D e. ZZ )
20 5 nnzd
 |-  ( ph -> E e. ZZ )
21 18 19 20 6 8 dvdstrd
 |-  ( ph -> ( A x. C ) || E )
22 1 3 5 nnproddivdvdsd
 |-  ( ph -> ( ( A x. C ) || E <-> A || ( E / C ) ) )
23 21 22 mpbid
 |-  ( ph -> A || ( E / C ) )
24 10 11 16 9 23 13 coprmdvds2d
 |-  ( ph -> ( A x. B ) || ( E / C ) )
25 1 2 nnmulcld
 |-  ( ph -> ( A x. B ) e. NN )
26 25 3 5 nnproddivdvdsd
 |-  ( ph -> ( ( ( A x. B ) x. C ) || E <-> ( A x. B ) || ( E / C ) ) )
27 24 26 mpbird
 |-  ( ph -> ( ( A x. B ) x. C ) || E )