Metamath Proof Explorer


Theorem lcmineqlem15

Description: F times the least common multiple of 1 to n is a natural number. (Contributed by metakunt, 10-May-2024)

Ref Expression
Hypotheses lcmineqlem15.1
|- F = S. ( 0 [,] 1 ) ( ( x ^ ( M - 1 ) ) x. ( ( 1 - x ) ^ ( N - M ) ) ) _d x
lcmineqlem15.2
|- ( ph -> N e. NN )
lcmineqlem15.3
|- ( ph -> M e. NN )
lcmineqlem15.4
|- ( ph -> M <_ N )
Assertion lcmineqlem15
|- ( ph -> ( ( _lcm ` ( 1 ... N ) ) x. F ) e. NN )

Proof

Step Hyp Ref Expression
1 lcmineqlem15.1
 |-  F = S. ( 0 [,] 1 ) ( ( x ^ ( M - 1 ) ) x. ( ( 1 - x ) ^ ( N - M ) ) ) _d x
2 lcmineqlem15.2
 |-  ( ph -> N e. NN )
3 lcmineqlem15.3
 |-  ( ph -> M e. NN )
4 lcmineqlem15.4
 |-  ( ph -> M <_ N )
5 1 2 3 4 lcmineqlem6
 |-  ( ph -> ( ( _lcm ` ( 1 ... N ) ) x. F ) e. ZZ )
6 fz1ssnn
 |-  ( 1 ... N ) C_ NN
7 fzfi
 |-  ( 1 ... N ) e. Fin
8 lcmfnncl
 |-  ( ( ( 1 ... N ) C_ NN /\ ( 1 ... N ) e. Fin ) -> ( _lcm ` ( 1 ... N ) ) e. NN )
9 6 7 8 mp2an
 |-  ( _lcm ` ( 1 ... N ) ) e. NN
10 9 a1i
 |-  ( ph -> ( _lcm ` ( 1 ... N ) ) e. NN )
11 10 nnred
 |-  ( ph -> ( _lcm ` ( 1 ... N ) ) e. RR )
12 1 3 2 4 lcmineqlem13
 |-  ( ph -> F = ( 1 / ( M x. ( N _C M ) ) ) )
13 1red
 |-  ( ph -> 1 e. RR )
14 3 nnnn0d
 |-  ( ph -> M e. NN0 )
15 2 14 4 bccl2d
 |-  ( ph -> ( N _C M ) e. NN )
16 3 15 nnmulcld
 |-  ( ph -> ( M x. ( N _C M ) ) e. NN )
17 16 nnred
 |-  ( ph -> ( M x. ( N _C M ) ) e. RR )
18 16 nnne0d
 |-  ( ph -> ( M x. ( N _C M ) ) =/= 0 )
19 13 17 18 redivcld
 |-  ( ph -> ( 1 / ( M x. ( N _C M ) ) ) e. RR )
20 12 19 eqeltrd
 |-  ( ph -> F e. RR )
21 10 nngt0d
 |-  ( ph -> 0 < ( _lcm ` ( 1 ... N ) ) )
22 nnrecgt0
 |-  ( ( M x. ( N _C M ) ) e. NN -> 0 < ( 1 / ( M x. ( N _C M ) ) ) )
23 16 22 syl
 |-  ( ph -> 0 < ( 1 / ( M x. ( N _C M ) ) ) )
24 23 12 breqtrrd
 |-  ( ph -> 0 < F )
25 11 20 21 24 mulgt0d
 |-  ( ph -> 0 < ( ( _lcm ` ( 1 ... N ) ) x. F ) )
26 elnnz
 |-  ( ( ( _lcm ` ( 1 ... N ) ) x. F ) e. NN <-> ( ( ( _lcm ` ( 1 ... N ) ) x. F ) e. ZZ /\ 0 < ( ( _lcm ` ( 1 ... N ) ) x. F ) ) )
27 5 25 26 sylanbrc
 |-  ( ph -> ( ( _lcm ` ( 1 ... N ) ) x. F ) e. NN )