| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lcmineqlem15.1 |
|- F = S. ( 0 [,] 1 ) ( ( x ^ ( M - 1 ) ) x. ( ( 1 - x ) ^ ( N - M ) ) ) _d x |
| 2 |
|
lcmineqlem15.2 |
|- ( ph -> N e. NN ) |
| 3 |
|
lcmineqlem15.3 |
|- ( ph -> M e. NN ) |
| 4 |
|
lcmineqlem15.4 |
|- ( ph -> M <_ N ) |
| 5 |
1 2 3 4
|
lcmineqlem6 |
|- ( ph -> ( ( _lcm ` ( 1 ... N ) ) x. F ) e. ZZ ) |
| 6 |
|
fz1ssnn |
|- ( 1 ... N ) C_ NN |
| 7 |
|
fzfi |
|- ( 1 ... N ) e. Fin |
| 8 |
|
lcmfnncl |
|- ( ( ( 1 ... N ) C_ NN /\ ( 1 ... N ) e. Fin ) -> ( _lcm ` ( 1 ... N ) ) e. NN ) |
| 9 |
6 7 8
|
mp2an |
|- ( _lcm ` ( 1 ... N ) ) e. NN |
| 10 |
9
|
a1i |
|- ( ph -> ( _lcm ` ( 1 ... N ) ) e. NN ) |
| 11 |
10
|
nnred |
|- ( ph -> ( _lcm ` ( 1 ... N ) ) e. RR ) |
| 12 |
1 3 2 4
|
lcmineqlem13 |
|- ( ph -> F = ( 1 / ( M x. ( N _C M ) ) ) ) |
| 13 |
|
1red |
|- ( ph -> 1 e. RR ) |
| 14 |
3
|
nnnn0d |
|- ( ph -> M e. NN0 ) |
| 15 |
2 14 4
|
bccl2d |
|- ( ph -> ( N _C M ) e. NN ) |
| 16 |
3 15
|
nnmulcld |
|- ( ph -> ( M x. ( N _C M ) ) e. NN ) |
| 17 |
16
|
nnred |
|- ( ph -> ( M x. ( N _C M ) ) e. RR ) |
| 18 |
16
|
nnne0d |
|- ( ph -> ( M x. ( N _C M ) ) =/= 0 ) |
| 19 |
13 17 18
|
redivcld |
|- ( ph -> ( 1 / ( M x. ( N _C M ) ) ) e. RR ) |
| 20 |
12 19
|
eqeltrd |
|- ( ph -> F e. RR ) |
| 21 |
10
|
nngt0d |
|- ( ph -> 0 < ( _lcm ` ( 1 ... N ) ) ) |
| 22 |
|
nnrecgt0 |
|- ( ( M x. ( N _C M ) ) e. NN -> 0 < ( 1 / ( M x. ( N _C M ) ) ) ) |
| 23 |
16 22
|
syl |
|- ( ph -> 0 < ( 1 / ( M x. ( N _C M ) ) ) ) |
| 24 |
23 12
|
breqtrrd |
|- ( ph -> 0 < F ) |
| 25 |
11 20 21 24
|
mulgt0d |
|- ( ph -> 0 < ( ( _lcm ` ( 1 ... N ) ) x. F ) ) |
| 26 |
|
elnnz |
|- ( ( ( _lcm ` ( 1 ... N ) ) x. F ) e. NN <-> ( ( ( _lcm ` ( 1 ... N ) ) x. F ) e. ZZ /\ 0 < ( ( _lcm ` ( 1 ... N ) ) x. F ) ) ) |
| 27 |
5 25 26
|
sylanbrc |
|- ( ph -> ( ( _lcm ` ( 1 ... N ) ) x. F ) e. NN ) |