Step |
Hyp |
Ref |
Expression |
1 |
|
lcmineqlem16.1 |
|- ( ph -> M e. NN ) |
2 |
|
lcmineqlem16.2 |
|- ( ph -> N e. NN ) |
3 |
|
lcmineqlem16.3 |
|- ( ph -> M <_ N ) |
4 |
|
fz1ssnn |
|- ( 1 ... N ) C_ NN |
5 |
|
fzfi |
|- ( 1 ... N ) e. Fin |
6 |
|
lcmfnncl |
|- ( ( ( 1 ... N ) C_ NN /\ ( 1 ... N ) e. Fin ) -> ( _lcm ` ( 1 ... N ) ) e. NN ) |
7 |
4 5 6
|
mp2an |
|- ( _lcm ` ( 1 ... N ) ) e. NN |
8 |
7
|
a1i |
|- ( ph -> ( _lcm ` ( 1 ... N ) ) e. NN ) |
9 |
8
|
nncnd |
|- ( ph -> ( _lcm ` ( 1 ... N ) ) e. CC ) |
10 |
1
|
nncnd |
|- ( ph -> M e. CC ) |
11 |
1
|
nnnn0d |
|- ( ph -> M e. NN0 ) |
12 |
2 11 3
|
bccl2d |
|- ( ph -> ( N _C M ) e. NN ) |
13 |
12
|
nncnd |
|- ( ph -> ( N _C M ) e. CC ) |
14 |
10 13
|
mulcld |
|- ( ph -> ( M x. ( N _C M ) ) e. CC ) |
15 |
1
|
nnne0d |
|- ( ph -> M =/= 0 ) |
16 |
12
|
nnne0d |
|- ( ph -> ( N _C M ) =/= 0 ) |
17 |
10 13 15 16
|
mulne0d |
|- ( ph -> ( M x. ( N _C M ) ) =/= 0 ) |
18 |
9 14 17
|
divrecd |
|- ( ph -> ( ( _lcm ` ( 1 ... N ) ) / ( M x. ( N _C M ) ) ) = ( ( _lcm ` ( 1 ... N ) ) x. ( 1 / ( M x. ( N _C M ) ) ) ) ) |
19 |
|
eqid |
|- S. ( 0 [,] 1 ) ( ( x ^ ( M - 1 ) ) x. ( ( 1 - x ) ^ ( N - M ) ) ) _d x = S. ( 0 [,] 1 ) ( ( x ^ ( M - 1 ) ) x. ( ( 1 - x ) ^ ( N - M ) ) ) _d x |
20 |
19 1 2 3
|
lcmineqlem13 |
|- ( ph -> S. ( 0 [,] 1 ) ( ( x ^ ( M - 1 ) ) x. ( ( 1 - x ) ^ ( N - M ) ) ) _d x = ( 1 / ( M x. ( N _C M ) ) ) ) |
21 |
20
|
oveq2d |
|- ( ph -> ( ( _lcm ` ( 1 ... N ) ) x. S. ( 0 [,] 1 ) ( ( x ^ ( M - 1 ) ) x. ( ( 1 - x ) ^ ( N - M ) ) ) _d x ) = ( ( _lcm ` ( 1 ... N ) ) x. ( 1 / ( M x. ( N _C M ) ) ) ) ) |
22 |
19 2 1 3
|
lcmineqlem15 |
|- ( ph -> ( ( _lcm ` ( 1 ... N ) ) x. S. ( 0 [,] 1 ) ( ( x ^ ( M - 1 ) ) x. ( ( 1 - x ) ^ ( N - M ) ) ) _d x ) e. NN ) |
23 |
21 22
|
eqeltrrd |
|- ( ph -> ( ( _lcm ` ( 1 ... N ) ) x. ( 1 / ( M x. ( N _C M ) ) ) ) e. NN ) |
24 |
18 23
|
eqeltrd |
|- ( ph -> ( ( _lcm ` ( 1 ... N ) ) / ( M x. ( N _C M ) ) ) e. NN ) |
25 |
1 12
|
nnmulcld |
|- ( ph -> ( M x. ( N _C M ) ) e. NN ) |
26 |
25 8
|
nndivdvdsd |
|- ( ph -> ( ( M x. ( N _C M ) ) || ( _lcm ` ( 1 ... N ) ) <-> ( ( _lcm ` ( 1 ... N ) ) / ( M x. ( N _C M ) ) ) e. NN ) ) |
27 |
24 26
|
mpbird |
|- ( ph -> ( M x. ( N _C M ) ) || ( _lcm ` ( 1 ... N ) ) ) |