Metamath Proof Explorer


Theorem lcmineqlem16

Description: Technical divisibility lemma. (Contributed by metakunt, 12-May-2024)

Ref Expression
Hypotheses lcmineqlem16.1 φM
lcmineqlem16.2 φN
lcmineqlem16.3 φMN
Assertion lcmineqlem16 φM(NM)lcm_1N

Proof

Step Hyp Ref Expression
1 lcmineqlem16.1 φM
2 lcmineqlem16.2 φN
3 lcmineqlem16.3 φMN
4 fz1ssnn 1N
5 fzfi 1NFin
6 lcmfnncl 1N1NFinlcm_1N
7 4 5 6 mp2an lcm_1N
8 7 a1i φlcm_1N
9 8 nncnd φlcm_1N
10 1 nncnd φM
11 1 nnnn0d φM0
12 2 11 3 bccl2d φ(NM)
13 12 nncnd φ(NM)
14 10 13 mulcld φM(NM)
15 1 nnne0d φM0
16 12 nnne0d φ(NM)0
17 10 13 15 16 mulne0d φM(NM)0
18 9 14 17 divrecd φlcm_1NM(NM)=lcm_1N1M(NM)
19 eqid 01xM11xNMdx=01xM11xNMdx
20 19 1 2 3 lcmineqlem13 φ01xM11xNMdx=1M(NM)
21 20 oveq2d φlcm_1N01xM11xNMdx=lcm_1N1M(NM)
22 19 2 1 3 lcmineqlem15 φlcm_1N01xM11xNMdx
23 21 22 eqeltrrd φlcm_1N1M(NM)
24 18 23 eqeltrd φlcm_1NM(NM)
25 1 12 nnmulcld φM(NM)
26 25 8 nndivdvdsd φM(NM)lcm_1Nlcm_1NM(NM)
27 24 26 mpbird φM(NM)lcm_1N