Step |
Hyp |
Ref |
Expression |
1 |
|
lcmineqlem16.1 |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
2 |
|
lcmineqlem16.2 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
3 |
|
lcmineqlem16.3 |
⊢ ( 𝜑 → 𝑀 ≤ 𝑁 ) |
4 |
|
fz1ssnn |
⊢ ( 1 ... 𝑁 ) ⊆ ℕ |
5 |
|
fzfi |
⊢ ( 1 ... 𝑁 ) ∈ Fin |
6 |
|
lcmfnncl |
⊢ ( ( ( 1 ... 𝑁 ) ⊆ ℕ ∧ ( 1 ... 𝑁 ) ∈ Fin ) → ( lcm ‘ ( 1 ... 𝑁 ) ) ∈ ℕ ) |
7 |
4 5 6
|
mp2an |
⊢ ( lcm ‘ ( 1 ... 𝑁 ) ) ∈ ℕ |
8 |
7
|
a1i |
⊢ ( 𝜑 → ( lcm ‘ ( 1 ... 𝑁 ) ) ∈ ℕ ) |
9 |
8
|
nncnd |
⊢ ( 𝜑 → ( lcm ‘ ( 1 ... 𝑁 ) ) ∈ ℂ ) |
10 |
1
|
nncnd |
⊢ ( 𝜑 → 𝑀 ∈ ℂ ) |
11 |
1
|
nnnn0d |
⊢ ( 𝜑 → 𝑀 ∈ ℕ0 ) |
12 |
2 11 3
|
bccl2d |
⊢ ( 𝜑 → ( 𝑁 C 𝑀 ) ∈ ℕ ) |
13 |
12
|
nncnd |
⊢ ( 𝜑 → ( 𝑁 C 𝑀 ) ∈ ℂ ) |
14 |
10 13
|
mulcld |
⊢ ( 𝜑 → ( 𝑀 · ( 𝑁 C 𝑀 ) ) ∈ ℂ ) |
15 |
1
|
nnne0d |
⊢ ( 𝜑 → 𝑀 ≠ 0 ) |
16 |
12
|
nnne0d |
⊢ ( 𝜑 → ( 𝑁 C 𝑀 ) ≠ 0 ) |
17 |
10 13 15 16
|
mulne0d |
⊢ ( 𝜑 → ( 𝑀 · ( 𝑁 C 𝑀 ) ) ≠ 0 ) |
18 |
9 14 17
|
divrecd |
⊢ ( 𝜑 → ( ( lcm ‘ ( 1 ... 𝑁 ) ) / ( 𝑀 · ( 𝑁 C 𝑀 ) ) ) = ( ( lcm ‘ ( 1 ... 𝑁 ) ) · ( 1 / ( 𝑀 · ( 𝑁 C 𝑀 ) ) ) ) ) |
19 |
|
eqid |
⊢ ∫ ( 0 [,] 1 ) ( ( 𝑥 ↑ ( 𝑀 − 1 ) ) · ( ( 1 − 𝑥 ) ↑ ( 𝑁 − 𝑀 ) ) ) d 𝑥 = ∫ ( 0 [,] 1 ) ( ( 𝑥 ↑ ( 𝑀 − 1 ) ) · ( ( 1 − 𝑥 ) ↑ ( 𝑁 − 𝑀 ) ) ) d 𝑥 |
20 |
19 1 2 3
|
lcmineqlem13 |
⊢ ( 𝜑 → ∫ ( 0 [,] 1 ) ( ( 𝑥 ↑ ( 𝑀 − 1 ) ) · ( ( 1 − 𝑥 ) ↑ ( 𝑁 − 𝑀 ) ) ) d 𝑥 = ( 1 / ( 𝑀 · ( 𝑁 C 𝑀 ) ) ) ) |
21 |
20
|
oveq2d |
⊢ ( 𝜑 → ( ( lcm ‘ ( 1 ... 𝑁 ) ) · ∫ ( 0 [,] 1 ) ( ( 𝑥 ↑ ( 𝑀 − 1 ) ) · ( ( 1 − 𝑥 ) ↑ ( 𝑁 − 𝑀 ) ) ) d 𝑥 ) = ( ( lcm ‘ ( 1 ... 𝑁 ) ) · ( 1 / ( 𝑀 · ( 𝑁 C 𝑀 ) ) ) ) ) |
22 |
19 2 1 3
|
lcmineqlem15 |
⊢ ( 𝜑 → ( ( lcm ‘ ( 1 ... 𝑁 ) ) · ∫ ( 0 [,] 1 ) ( ( 𝑥 ↑ ( 𝑀 − 1 ) ) · ( ( 1 − 𝑥 ) ↑ ( 𝑁 − 𝑀 ) ) ) d 𝑥 ) ∈ ℕ ) |
23 |
21 22
|
eqeltrrd |
⊢ ( 𝜑 → ( ( lcm ‘ ( 1 ... 𝑁 ) ) · ( 1 / ( 𝑀 · ( 𝑁 C 𝑀 ) ) ) ) ∈ ℕ ) |
24 |
18 23
|
eqeltrd |
⊢ ( 𝜑 → ( ( lcm ‘ ( 1 ... 𝑁 ) ) / ( 𝑀 · ( 𝑁 C 𝑀 ) ) ) ∈ ℕ ) |
25 |
1 12
|
nnmulcld |
⊢ ( 𝜑 → ( 𝑀 · ( 𝑁 C 𝑀 ) ) ∈ ℕ ) |
26 |
25 8
|
nndivdvdsd |
⊢ ( 𝜑 → ( ( 𝑀 · ( 𝑁 C 𝑀 ) ) ∥ ( lcm ‘ ( 1 ... 𝑁 ) ) ↔ ( ( lcm ‘ ( 1 ... 𝑁 ) ) / ( 𝑀 · ( 𝑁 C 𝑀 ) ) ) ∈ ℕ ) ) |
27 |
24 26
|
mpbird |
⊢ ( 𝜑 → ( 𝑀 · ( 𝑁 C 𝑀 ) ) ∥ ( lcm ‘ ( 1 ... 𝑁 ) ) ) |