| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lcmineqlem13.1 |
|
| 2 |
|
lcmineqlem13.2 |
|
| 3 |
|
lcmineqlem13.3 |
|
| 4 |
|
lcmineqlem13.4 |
|
| 5 |
2
|
nnzd |
|
| 6 |
|
nnge1 |
|
| 7 |
2 6
|
syl |
|
| 8 |
5 7 4
|
3jca |
|
| 9 |
|
oveq1 |
|
| 10 |
9
|
oveq2d |
|
| 11 |
|
oveq2 |
|
| 12 |
11
|
oveq2d |
|
| 13 |
10 12
|
oveq12d |
|
| 14 |
13
|
adantr |
|
| 15 |
14
|
itgeq2dv |
|
| 16 |
|
id |
|
| 17 |
|
oveq2 |
|
| 18 |
16 17
|
oveq12d |
|
| 19 |
18
|
oveq2d |
|
| 20 |
15 19
|
eqeq12d |
|
| 21 |
|
oveq1 |
|
| 22 |
21
|
oveq2d |
|
| 23 |
|
oveq2 |
|
| 24 |
23
|
oveq2d |
|
| 25 |
22 24
|
oveq12d |
|
| 26 |
25
|
adantr |
|
| 27 |
26
|
itgeq2dv |
|
| 28 |
|
id |
|
| 29 |
|
oveq2 |
|
| 30 |
28 29
|
oveq12d |
|
| 31 |
30
|
oveq2d |
|
| 32 |
27 31
|
eqeq12d |
|
| 33 |
|
oveq1 |
|
| 34 |
33
|
oveq2d |
|
| 35 |
|
oveq2 |
|
| 36 |
35
|
oveq2d |
|
| 37 |
34 36
|
oveq12d |
|
| 38 |
37
|
adantr |
|
| 39 |
38
|
itgeq2dv |
|
| 40 |
|
id |
|
| 41 |
|
oveq2 |
|
| 42 |
40 41
|
oveq12d |
|
| 43 |
42
|
oveq2d |
|
| 44 |
39 43
|
eqeq12d |
|
| 45 |
|
oveq1 |
|
| 46 |
45
|
oveq2d |
|
| 47 |
|
oveq2 |
|
| 48 |
47
|
oveq2d |
|
| 49 |
46 48
|
oveq12d |
|
| 50 |
49
|
adantr |
|
| 51 |
50
|
itgeq2dv |
|
| 52 |
|
id |
|
| 53 |
|
oveq2 |
|
| 54 |
52 53
|
oveq12d |
|
| 55 |
54
|
oveq2d |
|
| 56 |
51 55
|
eqeq12d |
|
| 57 |
3
|
lcmineqlem12 |
|
| 58 |
|
elnnz1 |
|
| 59 |
58
|
biimpri |
|
| 60 |
59
|
3adant3 |
|
| 61 |
60
|
adantl |
|
| 62 |
3
|
adantr |
|
| 63 |
|
simpr3 |
|
| 64 |
61 62 63
|
lcmineqlem10 |
|
| 65 |
64
|
3adant3 |
|
| 66 |
|
oveq2 |
|
| 67 |
66
|
3ad2ant3 |
|
| 68 |
65 67
|
eqtrd |
|
| 69 |
61 62 63
|
lcmineqlem11 |
|
| 70 |
69
|
3adant3 |
|
| 71 |
68 70
|
eqtr4d |
|
| 72 |
|
1zzd |
|
| 73 |
3
|
nnzd |
|
| 74 |
3
|
nnge1d |
|
| 75 |
20 32 44 56 57 71 72 73 74
|
fzindd |
|
| 76 |
8 75
|
mpdan |
|
| 77 |
1 76
|
eqtrid |
|