Step |
Hyp |
Ref |
Expression |
1 |
|
lcmineqlem11.1 |
|
2 |
|
lcmineqlem11.2 |
|
3 |
|
lcmineqlem11.3 |
|
4 |
1
|
nncnd |
|
5 |
|
1cnd |
|
6 |
4 5
|
addcld |
|
7 |
1
|
nnnn0d |
|
8 |
|
1nn0 |
|
9 |
8
|
a1i |
|
10 |
7 9
|
nn0addcld |
|
11 |
1
|
nnzd |
|
12 |
2
|
nnzd |
|
13 |
|
zltp1le |
|
14 |
11 12 13
|
syl2anc |
|
15 |
3 14
|
mpbid |
|
16 |
2 10 15
|
bccl2d |
|
17 |
16
|
nncnd |
|
18 |
6 17
|
mulcld |
|
19 |
18
|
div1d |
|
20 |
11
|
peano2zd |
|
21 |
1
|
peano2nnd |
|
22 |
21
|
nnge1d |
|
23 |
20 22 15
|
3jca |
|
24 |
|
1z |
|
25 |
|
elfz1 |
|
26 |
24 25
|
mpan |
|
27 |
12 26
|
syl |
|
28 |
23 27
|
mpbird |
|
29 |
|
bcm1k |
|
30 |
28 29
|
syl |
|
31 |
4 5
|
pncand |
|
32 |
31
|
oveq2d |
|
33 |
31
|
oveq2d |
|
34 |
33
|
oveq1d |
|
35 |
32 34
|
oveq12d |
|
36 |
30 35
|
eqtrd |
|
37 |
1
|
nnred |
|
38 |
2
|
nnred |
|
39 |
37 38 3
|
ltled |
|
40 |
2 7 39
|
bccl2d |
|
41 |
40
|
nncnd |
|
42 |
2
|
nncnd |
|
43 |
42 4
|
subcld |
|
44 |
21
|
nnne0d |
|
45 |
41 43 6 44
|
divassd |
|
46 |
36 45
|
eqtr4d |
|
47 |
46
|
eqcomd |
|
48 |
41 43
|
mulcld |
|
49 |
48 17 6 44
|
divmul2d |
|
50 |
47 49
|
mpbid |
|
51 |
50
|
eqcomd |
|
52 |
41 43
|
mulcomd |
|
53 |
51 52
|
eqtrd |
|
54 |
19 53
|
eqtrd |
|
55 |
43 41
|
mulcld |
|
56 |
1
|
nnne0d |
|
57 |
55 4 56
|
divcan3d |
|
58 |
54 57
|
eqtr4d |
|
59 |
4 43 41
|
mul12d |
|
60 |
59
|
oveq1d |
|
61 |
58 60
|
eqtrd |
|
62 |
|
0ne1 |
|
63 |
62
|
a1i |
|
64 |
63
|
necomd |
|
65 |
16
|
nnne0d |
|
66 |
6 17 44 65
|
mulne0d |
|
67 |
4 41
|
mulcld |
|
68 |
43 67
|
mulcld |
|
69 |
37 3
|
gtned |
|
70 |
42 4 69
|
subne0d |
|
71 |
40
|
nnne0d |
|
72 |
4 41 56 71
|
mulne0d |
|
73 |
43 67 70 72
|
mulne0d |
|
74 |
5 64 18 66 4 56 68 73
|
recbothd |
|
75 |
61 74
|
mpbird |
|
76 |
4
|
mulid1d |
|
77 |
76
|
oveq1d |
|
78 |
75 77
|
eqtr4d |
|
79 |
4 43 5 67 70 72
|
divmuldivd |
|
80 |
78 79
|
eqtr4d |
|