| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lcmineqlem11.1 |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
| 2 |
|
lcmineqlem11.2 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
| 3 |
|
lcmineqlem11.3 |
⊢ ( 𝜑 → 𝑀 < 𝑁 ) |
| 4 |
1
|
nncnd |
⊢ ( 𝜑 → 𝑀 ∈ ℂ ) |
| 5 |
|
1cnd |
⊢ ( 𝜑 → 1 ∈ ℂ ) |
| 6 |
4 5
|
addcld |
⊢ ( 𝜑 → ( 𝑀 + 1 ) ∈ ℂ ) |
| 7 |
1
|
nnnn0d |
⊢ ( 𝜑 → 𝑀 ∈ ℕ0 ) |
| 8 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
| 9 |
8
|
a1i |
⊢ ( 𝜑 → 1 ∈ ℕ0 ) |
| 10 |
7 9
|
nn0addcld |
⊢ ( 𝜑 → ( 𝑀 + 1 ) ∈ ℕ0 ) |
| 11 |
1
|
nnzd |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 12 |
2
|
nnzd |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
| 13 |
|
zltp1le |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 < 𝑁 ↔ ( 𝑀 + 1 ) ≤ 𝑁 ) ) |
| 14 |
11 12 13
|
syl2anc |
⊢ ( 𝜑 → ( 𝑀 < 𝑁 ↔ ( 𝑀 + 1 ) ≤ 𝑁 ) ) |
| 15 |
3 14
|
mpbid |
⊢ ( 𝜑 → ( 𝑀 + 1 ) ≤ 𝑁 ) |
| 16 |
2 10 15
|
bccl2d |
⊢ ( 𝜑 → ( 𝑁 C ( 𝑀 + 1 ) ) ∈ ℕ ) |
| 17 |
16
|
nncnd |
⊢ ( 𝜑 → ( 𝑁 C ( 𝑀 + 1 ) ) ∈ ℂ ) |
| 18 |
6 17
|
mulcld |
⊢ ( 𝜑 → ( ( 𝑀 + 1 ) · ( 𝑁 C ( 𝑀 + 1 ) ) ) ∈ ℂ ) |
| 19 |
18
|
div1d |
⊢ ( 𝜑 → ( ( ( 𝑀 + 1 ) · ( 𝑁 C ( 𝑀 + 1 ) ) ) / 1 ) = ( ( 𝑀 + 1 ) · ( 𝑁 C ( 𝑀 + 1 ) ) ) ) |
| 20 |
11
|
peano2zd |
⊢ ( 𝜑 → ( 𝑀 + 1 ) ∈ ℤ ) |
| 21 |
1
|
peano2nnd |
⊢ ( 𝜑 → ( 𝑀 + 1 ) ∈ ℕ ) |
| 22 |
21
|
nnge1d |
⊢ ( 𝜑 → 1 ≤ ( 𝑀 + 1 ) ) |
| 23 |
20 22 15
|
3jca |
⊢ ( 𝜑 → ( ( 𝑀 + 1 ) ∈ ℤ ∧ 1 ≤ ( 𝑀 + 1 ) ∧ ( 𝑀 + 1 ) ≤ 𝑁 ) ) |
| 24 |
|
1z |
⊢ 1 ∈ ℤ |
| 25 |
|
elfz1 |
⊢ ( ( 1 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑀 + 1 ) ∈ ( 1 ... 𝑁 ) ↔ ( ( 𝑀 + 1 ) ∈ ℤ ∧ 1 ≤ ( 𝑀 + 1 ) ∧ ( 𝑀 + 1 ) ≤ 𝑁 ) ) ) |
| 26 |
24 25
|
mpan |
⊢ ( 𝑁 ∈ ℤ → ( ( 𝑀 + 1 ) ∈ ( 1 ... 𝑁 ) ↔ ( ( 𝑀 + 1 ) ∈ ℤ ∧ 1 ≤ ( 𝑀 + 1 ) ∧ ( 𝑀 + 1 ) ≤ 𝑁 ) ) ) |
| 27 |
12 26
|
syl |
⊢ ( 𝜑 → ( ( 𝑀 + 1 ) ∈ ( 1 ... 𝑁 ) ↔ ( ( 𝑀 + 1 ) ∈ ℤ ∧ 1 ≤ ( 𝑀 + 1 ) ∧ ( 𝑀 + 1 ) ≤ 𝑁 ) ) ) |
| 28 |
23 27
|
mpbird |
⊢ ( 𝜑 → ( 𝑀 + 1 ) ∈ ( 1 ... 𝑁 ) ) |
| 29 |
|
bcm1k |
⊢ ( ( 𝑀 + 1 ) ∈ ( 1 ... 𝑁 ) → ( 𝑁 C ( 𝑀 + 1 ) ) = ( ( 𝑁 C ( ( 𝑀 + 1 ) − 1 ) ) · ( ( 𝑁 − ( ( 𝑀 + 1 ) − 1 ) ) / ( 𝑀 + 1 ) ) ) ) |
| 30 |
28 29
|
syl |
⊢ ( 𝜑 → ( 𝑁 C ( 𝑀 + 1 ) ) = ( ( 𝑁 C ( ( 𝑀 + 1 ) − 1 ) ) · ( ( 𝑁 − ( ( 𝑀 + 1 ) − 1 ) ) / ( 𝑀 + 1 ) ) ) ) |
| 31 |
4 5
|
pncand |
⊢ ( 𝜑 → ( ( 𝑀 + 1 ) − 1 ) = 𝑀 ) |
| 32 |
31
|
oveq2d |
⊢ ( 𝜑 → ( 𝑁 C ( ( 𝑀 + 1 ) − 1 ) ) = ( 𝑁 C 𝑀 ) ) |
| 33 |
31
|
oveq2d |
⊢ ( 𝜑 → ( 𝑁 − ( ( 𝑀 + 1 ) − 1 ) ) = ( 𝑁 − 𝑀 ) ) |
| 34 |
33
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝑁 − ( ( 𝑀 + 1 ) − 1 ) ) / ( 𝑀 + 1 ) ) = ( ( 𝑁 − 𝑀 ) / ( 𝑀 + 1 ) ) ) |
| 35 |
32 34
|
oveq12d |
⊢ ( 𝜑 → ( ( 𝑁 C ( ( 𝑀 + 1 ) − 1 ) ) · ( ( 𝑁 − ( ( 𝑀 + 1 ) − 1 ) ) / ( 𝑀 + 1 ) ) ) = ( ( 𝑁 C 𝑀 ) · ( ( 𝑁 − 𝑀 ) / ( 𝑀 + 1 ) ) ) ) |
| 36 |
30 35
|
eqtrd |
⊢ ( 𝜑 → ( 𝑁 C ( 𝑀 + 1 ) ) = ( ( 𝑁 C 𝑀 ) · ( ( 𝑁 − 𝑀 ) / ( 𝑀 + 1 ) ) ) ) |
| 37 |
1
|
nnred |
⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
| 38 |
2
|
nnred |
⊢ ( 𝜑 → 𝑁 ∈ ℝ ) |
| 39 |
37 38 3
|
ltled |
⊢ ( 𝜑 → 𝑀 ≤ 𝑁 ) |
| 40 |
2 7 39
|
bccl2d |
⊢ ( 𝜑 → ( 𝑁 C 𝑀 ) ∈ ℕ ) |
| 41 |
40
|
nncnd |
⊢ ( 𝜑 → ( 𝑁 C 𝑀 ) ∈ ℂ ) |
| 42 |
2
|
nncnd |
⊢ ( 𝜑 → 𝑁 ∈ ℂ ) |
| 43 |
42 4
|
subcld |
⊢ ( 𝜑 → ( 𝑁 − 𝑀 ) ∈ ℂ ) |
| 44 |
21
|
nnne0d |
⊢ ( 𝜑 → ( 𝑀 + 1 ) ≠ 0 ) |
| 45 |
41 43 6 44
|
divassd |
⊢ ( 𝜑 → ( ( ( 𝑁 C 𝑀 ) · ( 𝑁 − 𝑀 ) ) / ( 𝑀 + 1 ) ) = ( ( 𝑁 C 𝑀 ) · ( ( 𝑁 − 𝑀 ) / ( 𝑀 + 1 ) ) ) ) |
| 46 |
36 45
|
eqtr4d |
⊢ ( 𝜑 → ( 𝑁 C ( 𝑀 + 1 ) ) = ( ( ( 𝑁 C 𝑀 ) · ( 𝑁 − 𝑀 ) ) / ( 𝑀 + 1 ) ) ) |
| 47 |
46
|
eqcomd |
⊢ ( 𝜑 → ( ( ( 𝑁 C 𝑀 ) · ( 𝑁 − 𝑀 ) ) / ( 𝑀 + 1 ) ) = ( 𝑁 C ( 𝑀 + 1 ) ) ) |
| 48 |
41 43
|
mulcld |
⊢ ( 𝜑 → ( ( 𝑁 C 𝑀 ) · ( 𝑁 − 𝑀 ) ) ∈ ℂ ) |
| 49 |
48 17 6 44
|
divmul2d |
⊢ ( 𝜑 → ( ( ( ( 𝑁 C 𝑀 ) · ( 𝑁 − 𝑀 ) ) / ( 𝑀 + 1 ) ) = ( 𝑁 C ( 𝑀 + 1 ) ) ↔ ( ( 𝑁 C 𝑀 ) · ( 𝑁 − 𝑀 ) ) = ( ( 𝑀 + 1 ) · ( 𝑁 C ( 𝑀 + 1 ) ) ) ) ) |
| 50 |
47 49
|
mpbid |
⊢ ( 𝜑 → ( ( 𝑁 C 𝑀 ) · ( 𝑁 − 𝑀 ) ) = ( ( 𝑀 + 1 ) · ( 𝑁 C ( 𝑀 + 1 ) ) ) ) |
| 51 |
50
|
eqcomd |
⊢ ( 𝜑 → ( ( 𝑀 + 1 ) · ( 𝑁 C ( 𝑀 + 1 ) ) ) = ( ( 𝑁 C 𝑀 ) · ( 𝑁 − 𝑀 ) ) ) |
| 52 |
41 43
|
mulcomd |
⊢ ( 𝜑 → ( ( 𝑁 C 𝑀 ) · ( 𝑁 − 𝑀 ) ) = ( ( 𝑁 − 𝑀 ) · ( 𝑁 C 𝑀 ) ) ) |
| 53 |
51 52
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑀 + 1 ) · ( 𝑁 C ( 𝑀 + 1 ) ) ) = ( ( 𝑁 − 𝑀 ) · ( 𝑁 C 𝑀 ) ) ) |
| 54 |
19 53
|
eqtrd |
⊢ ( 𝜑 → ( ( ( 𝑀 + 1 ) · ( 𝑁 C ( 𝑀 + 1 ) ) ) / 1 ) = ( ( 𝑁 − 𝑀 ) · ( 𝑁 C 𝑀 ) ) ) |
| 55 |
43 41
|
mulcld |
⊢ ( 𝜑 → ( ( 𝑁 − 𝑀 ) · ( 𝑁 C 𝑀 ) ) ∈ ℂ ) |
| 56 |
1
|
nnne0d |
⊢ ( 𝜑 → 𝑀 ≠ 0 ) |
| 57 |
55 4 56
|
divcan3d |
⊢ ( 𝜑 → ( ( 𝑀 · ( ( 𝑁 − 𝑀 ) · ( 𝑁 C 𝑀 ) ) ) / 𝑀 ) = ( ( 𝑁 − 𝑀 ) · ( 𝑁 C 𝑀 ) ) ) |
| 58 |
54 57
|
eqtr4d |
⊢ ( 𝜑 → ( ( ( 𝑀 + 1 ) · ( 𝑁 C ( 𝑀 + 1 ) ) ) / 1 ) = ( ( 𝑀 · ( ( 𝑁 − 𝑀 ) · ( 𝑁 C 𝑀 ) ) ) / 𝑀 ) ) |
| 59 |
4 43 41
|
mul12d |
⊢ ( 𝜑 → ( 𝑀 · ( ( 𝑁 − 𝑀 ) · ( 𝑁 C 𝑀 ) ) ) = ( ( 𝑁 − 𝑀 ) · ( 𝑀 · ( 𝑁 C 𝑀 ) ) ) ) |
| 60 |
59
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝑀 · ( ( 𝑁 − 𝑀 ) · ( 𝑁 C 𝑀 ) ) ) / 𝑀 ) = ( ( ( 𝑁 − 𝑀 ) · ( 𝑀 · ( 𝑁 C 𝑀 ) ) ) / 𝑀 ) ) |
| 61 |
58 60
|
eqtrd |
⊢ ( 𝜑 → ( ( ( 𝑀 + 1 ) · ( 𝑁 C ( 𝑀 + 1 ) ) ) / 1 ) = ( ( ( 𝑁 − 𝑀 ) · ( 𝑀 · ( 𝑁 C 𝑀 ) ) ) / 𝑀 ) ) |
| 62 |
|
0ne1 |
⊢ 0 ≠ 1 |
| 63 |
62
|
a1i |
⊢ ( 𝜑 → 0 ≠ 1 ) |
| 64 |
63
|
necomd |
⊢ ( 𝜑 → 1 ≠ 0 ) |
| 65 |
16
|
nnne0d |
⊢ ( 𝜑 → ( 𝑁 C ( 𝑀 + 1 ) ) ≠ 0 ) |
| 66 |
6 17 44 65
|
mulne0d |
⊢ ( 𝜑 → ( ( 𝑀 + 1 ) · ( 𝑁 C ( 𝑀 + 1 ) ) ) ≠ 0 ) |
| 67 |
4 41
|
mulcld |
⊢ ( 𝜑 → ( 𝑀 · ( 𝑁 C 𝑀 ) ) ∈ ℂ ) |
| 68 |
43 67
|
mulcld |
⊢ ( 𝜑 → ( ( 𝑁 − 𝑀 ) · ( 𝑀 · ( 𝑁 C 𝑀 ) ) ) ∈ ℂ ) |
| 69 |
37 3
|
gtned |
⊢ ( 𝜑 → 𝑁 ≠ 𝑀 ) |
| 70 |
42 4 69
|
subne0d |
⊢ ( 𝜑 → ( 𝑁 − 𝑀 ) ≠ 0 ) |
| 71 |
40
|
nnne0d |
⊢ ( 𝜑 → ( 𝑁 C 𝑀 ) ≠ 0 ) |
| 72 |
4 41 56 71
|
mulne0d |
⊢ ( 𝜑 → ( 𝑀 · ( 𝑁 C 𝑀 ) ) ≠ 0 ) |
| 73 |
43 67 70 72
|
mulne0d |
⊢ ( 𝜑 → ( ( 𝑁 − 𝑀 ) · ( 𝑀 · ( 𝑁 C 𝑀 ) ) ) ≠ 0 ) |
| 74 |
5 64 18 66 4 56 68 73
|
recbothd |
⊢ ( 𝜑 → ( ( 1 / ( ( 𝑀 + 1 ) · ( 𝑁 C ( 𝑀 + 1 ) ) ) ) = ( 𝑀 / ( ( 𝑁 − 𝑀 ) · ( 𝑀 · ( 𝑁 C 𝑀 ) ) ) ) ↔ ( ( ( 𝑀 + 1 ) · ( 𝑁 C ( 𝑀 + 1 ) ) ) / 1 ) = ( ( ( 𝑁 − 𝑀 ) · ( 𝑀 · ( 𝑁 C 𝑀 ) ) ) / 𝑀 ) ) ) |
| 75 |
61 74
|
mpbird |
⊢ ( 𝜑 → ( 1 / ( ( 𝑀 + 1 ) · ( 𝑁 C ( 𝑀 + 1 ) ) ) ) = ( 𝑀 / ( ( 𝑁 − 𝑀 ) · ( 𝑀 · ( 𝑁 C 𝑀 ) ) ) ) ) |
| 76 |
4
|
mulridd |
⊢ ( 𝜑 → ( 𝑀 · 1 ) = 𝑀 ) |
| 77 |
76
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝑀 · 1 ) / ( ( 𝑁 − 𝑀 ) · ( 𝑀 · ( 𝑁 C 𝑀 ) ) ) ) = ( 𝑀 / ( ( 𝑁 − 𝑀 ) · ( 𝑀 · ( 𝑁 C 𝑀 ) ) ) ) ) |
| 78 |
75 77
|
eqtr4d |
⊢ ( 𝜑 → ( 1 / ( ( 𝑀 + 1 ) · ( 𝑁 C ( 𝑀 + 1 ) ) ) ) = ( ( 𝑀 · 1 ) / ( ( 𝑁 − 𝑀 ) · ( 𝑀 · ( 𝑁 C 𝑀 ) ) ) ) ) |
| 79 |
4 43 5 67 70 72
|
divmuldivd |
⊢ ( 𝜑 → ( ( 𝑀 / ( 𝑁 − 𝑀 ) ) · ( 1 / ( 𝑀 · ( 𝑁 C 𝑀 ) ) ) ) = ( ( 𝑀 · 1 ) / ( ( 𝑁 − 𝑀 ) · ( 𝑀 · ( 𝑁 C 𝑀 ) ) ) ) ) |
| 80 |
78 79
|
eqtr4d |
⊢ ( 𝜑 → ( 1 / ( ( 𝑀 + 1 ) · ( 𝑁 C ( 𝑀 + 1 ) ) ) ) = ( ( 𝑀 / ( 𝑁 − 𝑀 ) ) · ( 1 / ( 𝑀 · ( 𝑁 C 𝑀 ) ) ) ) ) |