Step |
Hyp |
Ref |
Expression |
1 |
|
lcmineqlem12.1 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
2 |
|
elunitcn |
⊢ ( 𝑡 ∈ ( 0 [,] 1 ) → 𝑡 ∈ ℂ ) |
3 |
|
1m1e0 |
⊢ ( 1 − 1 ) = 0 |
4 |
3
|
oveq2i |
⊢ ( 𝑡 ↑ ( 1 − 1 ) ) = ( 𝑡 ↑ 0 ) |
5 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℂ ) → 𝑡 ∈ ℂ ) |
6 |
5
|
exp0d |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℂ ) → ( 𝑡 ↑ 0 ) = 1 ) |
7 |
4 6
|
syl5eq |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℂ ) → ( 𝑡 ↑ ( 1 − 1 ) ) = 1 ) |
8 |
7
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℂ ) → ( ( 𝑡 ↑ ( 1 − 1 ) ) · ( ( 1 − 𝑡 ) ↑ ( 𝑁 − 1 ) ) ) = ( 1 · ( ( 1 − 𝑡 ) ↑ ( 𝑁 − 1 ) ) ) ) |
9 |
|
1cnd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℂ ) → 1 ∈ ℂ ) |
10 |
9 5
|
subcld |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℂ ) → ( 1 − 𝑡 ) ∈ ℂ ) |
11 |
|
nnm1nn0 |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 − 1 ) ∈ ℕ0 ) |
12 |
1 11
|
syl |
⊢ ( 𝜑 → ( 𝑁 − 1 ) ∈ ℕ0 ) |
13 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℂ ) → ( 𝑁 − 1 ) ∈ ℕ0 ) |
14 |
10 13
|
expcld |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℂ ) → ( ( 1 − 𝑡 ) ↑ ( 𝑁 − 1 ) ) ∈ ℂ ) |
15 |
14
|
mulid2d |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℂ ) → ( 1 · ( ( 1 − 𝑡 ) ↑ ( 𝑁 − 1 ) ) ) = ( ( 1 − 𝑡 ) ↑ ( 𝑁 − 1 ) ) ) |
16 |
8 15
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℂ ) → ( ( 𝑡 ↑ ( 1 − 1 ) ) · ( ( 1 − 𝑡 ) ↑ ( 𝑁 − 1 ) ) ) = ( ( 1 − 𝑡 ) ↑ ( 𝑁 − 1 ) ) ) |
17 |
2 16
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 0 [,] 1 ) ) → ( ( 𝑡 ↑ ( 1 − 1 ) ) · ( ( 1 − 𝑡 ) ↑ ( 𝑁 − 1 ) ) ) = ( ( 1 − 𝑡 ) ↑ ( 𝑁 − 1 ) ) ) |
18 |
17
|
itgeq2dv |
⊢ ( 𝜑 → ∫ ( 0 [,] 1 ) ( ( 𝑡 ↑ ( 1 − 1 ) ) · ( ( 1 − 𝑡 ) ↑ ( 𝑁 − 1 ) ) ) d 𝑡 = ∫ ( 0 [,] 1 ) ( ( 1 − 𝑡 ) ↑ ( 𝑁 − 1 ) ) d 𝑡 ) |
19 |
|
0red |
⊢ ( 𝜑 → 0 ∈ ℝ ) |
20 |
|
1red |
⊢ ( 𝜑 → 1 ∈ ℝ ) |
21 |
2 14
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 0 [,] 1 ) ) → ( ( 1 − 𝑡 ) ↑ ( 𝑁 − 1 ) ) ∈ ℂ ) |
22 |
19 20 21
|
itgioo |
⊢ ( 𝜑 → ∫ ( 0 (,) 1 ) ( ( 1 − 𝑡 ) ↑ ( 𝑁 − 1 ) ) d 𝑡 = ∫ ( 0 [,] 1 ) ( ( 1 − 𝑡 ) ↑ ( 𝑁 − 1 ) ) d 𝑡 ) |
23 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 0 (,) 1 ) ) → ( 𝑥 ∈ ( 0 (,) 1 ) ↦ ( ( 1 − 𝑥 ) ↑ ( 𝑁 − 1 ) ) ) = ( 𝑥 ∈ ( 0 (,) 1 ) ↦ ( ( 1 − 𝑥 ) ↑ ( 𝑁 − 1 ) ) ) ) |
24 |
|
oveq2 |
⊢ ( 𝑥 = 𝑡 → ( 1 − 𝑥 ) = ( 1 − 𝑡 ) ) |
25 |
24
|
oveq1d |
⊢ ( 𝑥 = 𝑡 → ( ( 1 − 𝑥 ) ↑ ( 𝑁 − 1 ) ) = ( ( 1 − 𝑡 ) ↑ ( 𝑁 − 1 ) ) ) |
26 |
25
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑡 ) → ( ( 1 − 𝑥 ) ↑ ( 𝑁 − 1 ) ) = ( ( 1 − 𝑡 ) ↑ ( 𝑁 − 1 ) ) ) |
27 |
26
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 0 (,) 1 ) ) ∧ 𝑥 = 𝑡 ) → ( ( 1 − 𝑥 ) ↑ ( 𝑁 − 1 ) ) = ( ( 1 − 𝑡 ) ↑ ( 𝑁 − 1 ) ) ) |
28 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 0 (,) 1 ) ) → 𝑡 ∈ ( 0 (,) 1 ) ) |
29 |
|
1cnd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 0 (,) 1 ) ) → 1 ∈ ℂ ) |
30 |
|
elioore |
⊢ ( 𝑡 ∈ ( 0 (,) 1 ) → 𝑡 ∈ ℝ ) |
31 |
|
recn |
⊢ ( 𝑡 ∈ ℝ → 𝑡 ∈ ℂ ) |
32 |
28 30 31
|
3syl |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 0 (,) 1 ) ) → 𝑡 ∈ ℂ ) |
33 |
29 32
|
subcld |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 0 (,) 1 ) ) → ( 1 − 𝑡 ) ∈ ℂ ) |
34 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 0 (,) 1 ) ) → ( 𝑁 − 1 ) ∈ ℕ0 ) |
35 |
33 34
|
expcld |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 0 (,) 1 ) ) → ( ( 1 − 𝑡 ) ↑ ( 𝑁 − 1 ) ) ∈ ℂ ) |
36 |
23 27 28 35
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 0 (,) 1 ) ) → ( ( 𝑥 ∈ ( 0 (,) 1 ) ↦ ( ( 1 − 𝑥 ) ↑ ( 𝑁 − 1 ) ) ) ‘ 𝑡 ) = ( ( 1 − 𝑡 ) ↑ ( 𝑁 − 1 ) ) ) |
37 |
36
|
itgeq2dv |
⊢ ( 𝜑 → ∫ ( 0 (,) 1 ) ( ( 𝑥 ∈ ( 0 (,) 1 ) ↦ ( ( 1 − 𝑥 ) ↑ ( 𝑁 − 1 ) ) ) ‘ 𝑡 ) d 𝑡 = ∫ ( 0 (,) 1 ) ( ( 1 − 𝑡 ) ↑ ( 𝑁 − 1 ) ) d 𝑡 ) |
38 |
|
cnelprrecn |
⊢ ℂ ∈ { ℝ , ℂ } |
39 |
38
|
a1i |
⊢ ( 𝜑 → ℂ ∈ { ℝ , ℂ } ) |
40 |
|
1cnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → 1 ∈ ℂ ) |
41 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → 𝑥 ∈ ℂ ) |
42 |
40 41
|
subcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → ( 1 − 𝑥 ) ∈ ℂ ) |
43 |
|
nnnn0 |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℕ0 ) |
44 |
1 43
|
syl |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
45 |
44
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → 𝑁 ∈ ℕ0 ) |
46 |
42 45
|
expcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → ( ( 1 − 𝑥 ) ↑ 𝑁 ) ∈ ℂ ) |
47 |
45
|
nn0cnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → 𝑁 ∈ ℂ ) |
48 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → ( 𝑁 − 1 ) ∈ ℕ0 ) |
49 |
42 48
|
expcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → ( ( 1 − 𝑥 ) ↑ ( 𝑁 − 1 ) ) ∈ ℂ ) |
50 |
47 49
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → ( 𝑁 · ( ( 1 − 𝑥 ) ↑ ( 𝑁 − 1 ) ) ) ∈ ℂ ) |
51 |
40
|
negcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → - 1 ∈ ℂ ) |
52 |
50 51
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → ( ( 𝑁 · ( ( 1 − 𝑥 ) ↑ ( 𝑁 − 1 ) ) ) · - 1 ) ∈ ℂ ) |
53 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℂ ) → 𝑦 ∈ ℂ ) |
54 |
44
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℂ ) → 𝑁 ∈ ℕ0 ) |
55 |
53 54
|
expcld |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℂ ) → ( 𝑦 ↑ 𝑁 ) ∈ ℂ ) |
56 |
54
|
nn0cnd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℂ ) → 𝑁 ∈ ℂ ) |
57 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℂ ) → ( 𝑁 − 1 ) ∈ ℕ0 ) |
58 |
53 57
|
expcld |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℂ ) → ( 𝑦 ↑ ( 𝑁 − 1 ) ) ∈ ℂ ) |
59 |
56 58
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℂ ) → ( 𝑁 · ( 𝑦 ↑ ( 𝑁 − 1 ) ) ) ∈ ℂ ) |
60 |
|
0cnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → 0 ∈ ℂ ) |
61 |
|
1cnd |
⊢ ( 𝜑 → 1 ∈ ℂ ) |
62 |
39 61
|
dvmptc |
⊢ ( 𝜑 → ( ℂ D ( 𝑥 ∈ ℂ ↦ 1 ) ) = ( 𝑥 ∈ ℂ ↦ 0 ) ) |
63 |
39
|
dvmptid |
⊢ ( 𝜑 → ( ℂ D ( 𝑥 ∈ ℂ ↦ 𝑥 ) ) = ( 𝑥 ∈ ℂ ↦ 1 ) ) |
64 |
39 40 60 62 41 40 63
|
dvmptsub |
⊢ ( 𝜑 → ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 1 − 𝑥 ) ) ) = ( 𝑥 ∈ ℂ ↦ ( 0 − 1 ) ) ) |
65 |
|
df-neg |
⊢ - 1 = ( 0 − 1 ) |
66 |
65
|
a1i |
⊢ ( 𝜑 → - 1 = ( 0 − 1 ) ) |
67 |
66
|
mpteq2dv |
⊢ ( 𝜑 → ( 𝑥 ∈ ℂ ↦ - 1 ) = ( 𝑥 ∈ ℂ ↦ ( 0 − 1 ) ) ) |
68 |
64 67
|
eqtr4d |
⊢ ( 𝜑 → ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 1 − 𝑥 ) ) ) = ( 𝑥 ∈ ℂ ↦ - 1 ) ) |
69 |
|
dvexp |
⊢ ( 𝑁 ∈ ℕ → ( ℂ D ( 𝑦 ∈ ℂ ↦ ( 𝑦 ↑ 𝑁 ) ) ) = ( 𝑦 ∈ ℂ ↦ ( 𝑁 · ( 𝑦 ↑ ( 𝑁 − 1 ) ) ) ) ) |
70 |
1 69
|
syl |
⊢ ( 𝜑 → ( ℂ D ( 𝑦 ∈ ℂ ↦ ( 𝑦 ↑ 𝑁 ) ) ) = ( 𝑦 ∈ ℂ ↦ ( 𝑁 · ( 𝑦 ↑ ( 𝑁 − 1 ) ) ) ) ) |
71 |
|
oveq1 |
⊢ ( 𝑦 = ( 1 − 𝑥 ) → ( 𝑦 ↑ 𝑁 ) = ( ( 1 − 𝑥 ) ↑ 𝑁 ) ) |
72 |
|
oveq1 |
⊢ ( 𝑦 = ( 1 − 𝑥 ) → ( 𝑦 ↑ ( 𝑁 − 1 ) ) = ( ( 1 − 𝑥 ) ↑ ( 𝑁 − 1 ) ) ) |
73 |
72
|
oveq2d |
⊢ ( 𝑦 = ( 1 − 𝑥 ) → ( 𝑁 · ( 𝑦 ↑ ( 𝑁 − 1 ) ) ) = ( 𝑁 · ( ( 1 − 𝑥 ) ↑ ( 𝑁 − 1 ) ) ) ) |
74 |
39 39 42 51 55 59 68 70 71 73
|
dvmptco |
⊢ ( 𝜑 → ( ℂ D ( 𝑥 ∈ ℂ ↦ ( ( 1 − 𝑥 ) ↑ 𝑁 ) ) ) = ( 𝑥 ∈ ℂ ↦ ( ( 𝑁 · ( ( 1 − 𝑥 ) ↑ ( 𝑁 − 1 ) ) ) · - 1 ) ) ) |
75 |
61
|
negcld |
⊢ ( 𝜑 → - 1 ∈ ℂ ) |
76 |
1
|
nncnd |
⊢ ( 𝜑 → 𝑁 ∈ ℂ ) |
77 |
1
|
nnne0d |
⊢ ( 𝜑 → 𝑁 ≠ 0 ) |
78 |
75 76 77
|
divcld |
⊢ ( 𝜑 → ( - 1 / 𝑁 ) ∈ ℂ ) |
79 |
39 46 52 74 78
|
dvmptcmul |
⊢ ( 𝜑 → ( ℂ D ( 𝑥 ∈ ℂ ↦ ( ( - 1 / 𝑁 ) · ( ( 1 − 𝑥 ) ↑ 𝑁 ) ) ) ) = ( 𝑥 ∈ ℂ ↦ ( ( - 1 / 𝑁 ) · ( ( 𝑁 · ( ( 1 − 𝑥 ) ↑ ( 𝑁 − 1 ) ) ) · - 1 ) ) ) ) |
80 |
78
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → ( - 1 / 𝑁 ) ∈ ℂ ) |
81 |
80 50 51
|
mulassd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → ( ( ( - 1 / 𝑁 ) · ( 𝑁 · ( ( 1 − 𝑥 ) ↑ ( 𝑁 − 1 ) ) ) ) · - 1 ) = ( ( - 1 / 𝑁 ) · ( ( 𝑁 · ( ( 1 − 𝑥 ) ↑ ( 𝑁 − 1 ) ) ) · - 1 ) ) ) |
82 |
81
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → ( ( - 1 / 𝑁 ) · ( ( 𝑁 · ( ( 1 − 𝑥 ) ↑ ( 𝑁 − 1 ) ) ) · - 1 ) ) = ( ( ( - 1 / 𝑁 ) · ( 𝑁 · ( ( 1 − 𝑥 ) ↑ ( 𝑁 − 1 ) ) ) ) · - 1 ) ) |
83 |
80 47 49
|
mulassd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → ( ( ( - 1 / 𝑁 ) · 𝑁 ) · ( ( 1 − 𝑥 ) ↑ ( 𝑁 − 1 ) ) ) = ( ( - 1 / 𝑁 ) · ( 𝑁 · ( ( 1 − 𝑥 ) ↑ ( 𝑁 − 1 ) ) ) ) ) |
84 |
83
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → ( ( ( ( - 1 / 𝑁 ) · 𝑁 ) · ( ( 1 − 𝑥 ) ↑ ( 𝑁 − 1 ) ) ) · - 1 ) = ( ( ( - 1 / 𝑁 ) · ( 𝑁 · ( ( 1 − 𝑥 ) ↑ ( 𝑁 − 1 ) ) ) ) · - 1 ) ) |
85 |
84
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → ( ( ( - 1 / 𝑁 ) · ( 𝑁 · ( ( 1 − 𝑥 ) ↑ ( 𝑁 − 1 ) ) ) ) · - 1 ) = ( ( ( ( - 1 / 𝑁 ) · 𝑁 ) · ( ( 1 − 𝑥 ) ↑ ( 𝑁 − 1 ) ) ) · - 1 ) ) |
86 |
82 85
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → ( ( - 1 / 𝑁 ) · ( ( 𝑁 · ( ( 1 − 𝑥 ) ↑ ( 𝑁 − 1 ) ) ) · - 1 ) ) = ( ( ( ( - 1 / 𝑁 ) · 𝑁 ) · ( ( 1 − 𝑥 ) ↑ ( 𝑁 − 1 ) ) ) · - 1 ) ) |
87 |
77
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → 𝑁 ≠ 0 ) |
88 |
51 47 87
|
divcan1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → ( ( - 1 / 𝑁 ) · 𝑁 ) = - 1 ) |
89 |
88
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → ( ( ( - 1 / 𝑁 ) · 𝑁 ) · ( ( 1 − 𝑥 ) ↑ ( 𝑁 − 1 ) ) ) = ( - 1 · ( ( 1 − 𝑥 ) ↑ ( 𝑁 − 1 ) ) ) ) |
90 |
89
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → ( ( ( ( - 1 / 𝑁 ) · 𝑁 ) · ( ( 1 − 𝑥 ) ↑ ( 𝑁 − 1 ) ) ) · - 1 ) = ( ( - 1 · ( ( 1 − 𝑥 ) ↑ ( 𝑁 − 1 ) ) ) · - 1 ) ) |
91 |
86 90
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → ( ( - 1 / 𝑁 ) · ( ( 𝑁 · ( ( 1 − 𝑥 ) ↑ ( 𝑁 − 1 ) ) ) · - 1 ) ) = ( ( - 1 · ( ( 1 − 𝑥 ) ↑ ( 𝑁 − 1 ) ) ) · - 1 ) ) |
92 |
51 51 49
|
mul32d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → ( ( - 1 · - 1 ) · ( ( 1 − 𝑥 ) ↑ ( 𝑁 − 1 ) ) ) = ( ( - 1 · ( ( 1 − 𝑥 ) ↑ ( 𝑁 − 1 ) ) ) · - 1 ) ) |
93 |
92
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → ( ( - 1 · ( ( 1 − 𝑥 ) ↑ ( 𝑁 − 1 ) ) ) · - 1 ) = ( ( - 1 · - 1 ) · ( ( 1 − 𝑥 ) ↑ ( 𝑁 − 1 ) ) ) ) |
94 |
91 93
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → ( ( - 1 / 𝑁 ) · ( ( 𝑁 · ( ( 1 − 𝑥 ) ↑ ( 𝑁 − 1 ) ) ) · - 1 ) ) = ( ( - 1 · - 1 ) · ( ( 1 − 𝑥 ) ↑ ( 𝑁 − 1 ) ) ) ) |
95 |
40 40
|
mul2negd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → ( - 1 · - 1 ) = ( 1 · 1 ) ) |
96 |
|
1t1e1 |
⊢ ( 1 · 1 ) = 1 |
97 |
95 96
|
eqtrdi |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → ( - 1 · - 1 ) = 1 ) |
98 |
97
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → ( ( - 1 · - 1 ) · ( ( 1 − 𝑥 ) ↑ ( 𝑁 − 1 ) ) ) = ( 1 · ( ( 1 − 𝑥 ) ↑ ( 𝑁 − 1 ) ) ) ) |
99 |
49
|
mulid2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → ( 1 · ( ( 1 − 𝑥 ) ↑ ( 𝑁 − 1 ) ) ) = ( ( 1 − 𝑥 ) ↑ ( 𝑁 − 1 ) ) ) |
100 |
98 99
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → ( ( - 1 · - 1 ) · ( ( 1 − 𝑥 ) ↑ ( 𝑁 − 1 ) ) ) = ( ( 1 − 𝑥 ) ↑ ( 𝑁 − 1 ) ) ) |
101 |
94 100
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → ( ( - 1 / 𝑁 ) · ( ( 𝑁 · ( ( 1 − 𝑥 ) ↑ ( 𝑁 − 1 ) ) ) · - 1 ) ) = ( ( 1 − 𝑥 ) ↑ ( 𝑁 − 1 ) ) ) |
102 |
101
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ ℂ ↦ ( ( - 1 / 𝑁 ) · ( ( 𝑁 · ( ( 1 − 𝑥 ) ↑ ( 𝑁 − 1 ) ) ) · - 1 ) ) ) = ( 𝑥 ∈ ℂ ↦ ( ( 1 − 𝑥 ) ↑ ( 𝑁 − 1 ) ) ) ) |
103 |
79 102
|
eqtrd |
⊢ ( 𝜑 → ( ℂ D ( 𝑥 ∈ ℂ ↦ ( ( - 1 / 𝑁 ) · ( ( 1 − 𝑥 ) ↑ 𝑁 ) ) ) ) = ( 𝑥 ∈ ℂ ↦ ( ( 1 − 𝑥 ) ↑ ( 𝑁 − 1 ) ) ) ) |
104 |
80 46
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → ( ( - 1 / 𝑁 ) · ( ( 1 − 𝑥 ) ↑ 𝑁 ) ) ∈ ℂ ) |
105 |
103 104 49
|
resdvopclptsd |
⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ ( 0 [,] 1 ) ↦ ( ( - 1 / 𝑁 ) · ( ( 1 − 𝑥 ) ↑ 𝑁 ) ) ) ) = ( 𝑥 ∈ ( 0 (,) 1 ) ↦ ( ( 1 − 𝑥 ) ↑ ( 𝑁 − 1 ) ) ) ) |
106 |
105
|
fveq1d |
⊢ ( 𝜑 → ( ( ℝ D ( 𝑥 ∈ ( 0 [,] 1 ) ↦ ( ( - 1 / 𝑁 ) · ( ( 1 − 𝑥 ) ↑ 𝑁 ) ) ) ) ‘ 𝑡 ) = ( ( 𝑥 ∈ ( 0 (,) 1 ) ↦ ( ( 1 − 𝑥 ) ↑ ( 𝑁 − 1 ) ) ) ‘ 𝑡 ) ) |
107 |
106
|
ralrimivw |
⊢ ( 𝜑 → ∀ 𝑡 ∈ ( 0 (,) 1 ) ( ( ℝ D ( 𝑥 ∈ ( 0 [,] 1 ) ↦ ( ( - 1 / 𝑁 ) · ( ( 1 − 𝑥 ) ↑ 𝑁 ) ) ) ) ‘ 𝑡 ) = ( ( 𝑥 ∈ ( 0 (,) 1 ) ↦ ( ( 1 − 𝑥 ) ↑ ( 𝑁 − 1 ) ) ) ‘ 𝑡 ) ) |
108 |
|
itgeq2 |
⊢ ( ∀ 𝑡 ∈ ( 0 (,) 1 ) ( ( ℝ D ( 𝑥 ∈ ( 0 [,] 1 ) ↦ ( ( - 1 / 𝑁 ) · ( ( 1 − 𝑥 ) ↑ 𝑁 ) ) ) ) ‘ 𝑡 ) = ( ( 𝑥 ∈ ( 0 (,) 1 ) ↦ ( ( 1 − 𝑥 ) ↑ ( 𝑁 − 1 ) ) ) ‘ 𝑡 ) → ∫ ( 0 (,) 1 ) ( ( ℝ D ( 𝑥 ∈ ( 0 [,] 1 ) ↦ ( ( - 1 / 𝑁 ) · ( ( 1 − 𝑥 ) ↑ 𝑁 ) ) ) ) ‘ 𝑡 ) d 𝑡 = ∫ ( 0 (,) 1 ) ( ( 𝑥 ∈ ( 0 (,) 1 ) ↦ ( ( 1 − 𝑥 ) ↑ ( 𝑁 − 1 ) ) ) ‘ 𝑡 ) d 𝑡 ) |
109 |
107 108
|
syl |
⊢ ( 𝜑 → ∫ ( 0 (,) 1 ) ( ( ℝ D ( 𝑥 ∈ ( 0 [,] 1 ) ↦ ( ( - 1 / 𝑁 ) · ( ( 1 − 𝑥 ) ↑ 𝑁 ) ) ) ) ‘ 𝑡 ) d 𝑡 = ∫ ( 0 (,) 1 ) ( ( 𝑥 ∈ ( 0 (,) 1 ) ↦ ( ( 1 − 𝑥 ) ↑ ( 𝑁 − 1 ) ) ) ‘ 𝑡 ) d 𝑡 ) |
110 |
|
0le1 |
⊢ 0 ≤ 1 |
111 |
110
|
a1i |
⊢ ( 𝜑 → 0 ≤ 1 ) |
112 |
|
nfv |
⊢ Ⅎ 𝑥 𝜑 |
113 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
114 |
|
ssid |
⊢ ℂ ⊆ ℂ |
115 |
|
cncfmptc |
⊢ ( ( 1 ∈ ℂ ∧ ℂ ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( 𝑥 ∈ ℂ ↦ 1 ) ∈ ( ℂ –cn→ ℂ ) ) |
116 |
113 114 114 115
|
mp3an |
⊢ ( 𝑥 ∈ ℂ ↦ 1 ) ∈ ( ℂ –cn→ ℂ ) |
117 |
116
|
a1i |
⊢ ( 𝜑 → ( 𝑥 ∈ ℂ ↦ 1 ) ∈ ( ℂ –cn→ ℂ ) ) |
118 |
|
cncfmptid |
⊢ ( ( ℂ ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( 𝑥 ∈ ℂ ↦ 𝑥 ) ∈ ( ℂ –cn→ ℂ ) ) |
119 |
114 114 118
|
mp2an |
⊢ ( 𝑥 ∈ ℂ ↦ 𝑥 ) ∈ ( ℂ –cn→ ℂ ) |
120 |
119
|
a1i |
⊢ ( 𝜑 → ( 𝑥 ∈ ℂ ↦ 𝑥 ) ∈ ( ℂ –cn→ ℂ ) ) |
121 |
117 120
|
subcncf |
⊢ ( 𝜑 → ( 𝑥 ∈ ℂ ↦ ( 1 − 𝑥 ) ) ∈ ( ℂ –cn→ ℂ ) ) |
122 |
|
expcncf |
⊢ ( ( 𝑁 − 1 ) ∈ ℕ0 → ( 𝑦 ∈ ℂ ↦ ( 𝑦 ↑ ( 𝑁 − 1 ) ) ) ∈ ( ℂ –cn→ ℂ ) ) |
123 |
12 122
|
syl |
⊢ ( 𝜑 → ( 𝑦 ∈ ℂ ↦ ( 𝑦 ↑ ( 𝑁 − 1 ) ) ) ∈ ( ℂ –cn→ ℂ ) ) |
124 |
|
ssidd |
⊢ ( 𝜑 → ℂ ⊆ ℂ ) |
125 |
112 121 123 124 72
|
cncfcompt2 |
⊢ ( 𝜑 → ( 𝑥 ∈ ℂ ↦ ( ( 1 − 𝑥 ) ↑ ( 𝑁 − 1 ) ) ) ∈ ( ℂ –cn→ ℂ ) ) |
126 |
125
|
resopunitintvd |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 0 (,) 1 ) ↦ ( ( 1 − 𝑥 ) ↑ ( 𝑁 − 1 ) ) ) ∈ ( ( 0 (,) 1 ) –cn→ ℂ ) ) |
127 |
105
|
eleq1d |
⊢ ( 𝜑 → ( ( ℝ D ( 𝑥 ∈ ( 0 [,] 1 ) ↦ ( ( - 1 / 𝑁 ) · ( ( 1 − 𝑥 ) ↑ 𝑁 ) ) ) ) ∈ ( ( 0 (,) 1 ) –cn→ ℂ ) ↔ ( 𝑥 ∈ ( 0 (,) 1 ) ↦ ( ( 1 − 𝑥 ) ↑ ( 𝑁 − 1 ) ) ) ∈ ( ( 0 (,) 1 ) –cn→ ℂ ) ) ) |
128 |
126 127
|
mpbird |
⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ ( 0 [,] 1 ) ↦ ( ( - 1 / 𝑁 ) · ( ( 1 − 𝑥 ) ↑ 𝑁 ) ) ) ) ∈ ( ( 0 (,) 1 ) –cn→ ℂ ) ) |
129 |
|
ioossicc |
⊢ ( 0 (,) 1 ) ⊆ ( 0 [,] 1 ) |
130 |
129
|
a1i |
⊢ ( 𝜑 → ( 0 (,) 1 ) ⊆ ( 0 [,] 1 ) ) |
131 |
|
ioombl |
⊢ ( 0 (,) 1 ) ∈ dom vol |
132 |
131
|
a1i |
⊢ ( 𝜑 → ( 0 (,) 1 ) ∈ dom vol ) |
133 |
|
elunitcn |
⊢ ( 𝑥 ∈ ( 0 [,] 1 ) → 𝑥 ∈ ℂ ) |
134 |
133 49
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 [,] 1 ) ) → ( ( 1 − 𝑥 ) ↑ ( 𝑁 − 1 ) ) ∈ ℂ ) |
135 |
114
|
a1i |
⊢ ( 𝜑 → ℂ ⊆ ℂ ) |
136 |
112 121 123 135 72
|
cncfcompt2 |
⊢ ( 𝜑 → ( 𝑥 ∈ ℂ ↦ ( ( 1 − 𝑥 ) ↑ ( 𝑁 − 1 ) ) ) ∈ ( ℂ –cn→ ℂ ) ) |
137 |
136
|
resclunitintvd |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 0 [,] 1 ) ↦ ( ( 1 − 𝑥 ) ↑ ( 𝑁 − 1 ) ) ) ∈ ( ( 0 [,] 1 ) –cn→ ℂ ) ) |
138 |
19 20 137
|
3jca |
⊢ ( 𝜑 → ( 0 ∈ ℝ ∧ 1 ∈ ℝ ∧ ( 𝑥 ∈ ( 0 [,] 1 ) ↦ ( ( 1 − 𝑥 ) ↑ ( 𝑁 − 1 ) ) ) ∈ ( ( 0 [,] 1 ) –cn→ ℂ ) ) ) |
139 |
|
cnicciblnc |
⊢ ( ( 0 ∈ ℝ ∧ 1 ∈ ℝ ∧ ( 𝑥 ∈ ( 0 [,] 1 ) ↦ ( ( 1 − 𝑥 ) ↑ ( 𝑁 − 1 ) ) ) ∈ ( ( 0 [,] 1 ) –cn→ ℂ ) ) → ( 𝑥 ∈ ( 0 [,] 1 ) ↦ ( ( 1 − 𝑥 ) ↑ ( 𝑁 − 1 ) ) ) ∈ 𝐿1 ) |
140 |
138 139
|
syl |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 0 [,] 1 ) ↦ ( ( 1 − 𝑥 ) ↑ ( 𝑁 − 1 ) ) ) ∈ 𝐿1 ) |
141 |
130 132 134 140
|
iblss |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 0 (,) 1 ) ↦ ( ( 1 − 𝑥 ) ↑ ( 𝑁 − 1 ) ) ) ∈ 𝐿1 ) |
142 |
105 141
|
eqeltrd |
⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ ( 0 [,] 1 ) ↦ ( ( - 1 / 𝑁 ) · ( ( 1 − 𝑥 ) ↑ 𝑁 ) ) ) ) ∈ 𝐿1 ) |
143 |
|
cncfmptc |
⊢ ( ( ( - 1 / 𝑁 ) ∈ ℂ ∧ ℂ ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( 𝑥 ∈ ℂ ↦ ( - 1 / 𝑁 ) ) ∈ ( ℂ –cn→ ℂ ) ) |
144 |
114 114 143
|
mp3an23 |
⊢ ( ( - 1 / 𝑁 ) ∈ ℂ → ( 𝑥 ∈ ℂ ↦ ( - 1 / 𝑁 ) ) ∈ ( ℂ –cn→ ℂ ) ) |
145 |
78 144
|
syl |
⊢ ( 𝜑 → ( 𝑥 ∈ ℂ ↦ ( - 1 / 𝑁 ) ) ∈ ( ℂ –cn→ ℂ ) ) |
146 |
145
|
resclunitintvd |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 0 [,] 1 ) ↦ ( - 1 / 𝑁 ) ) ∈ ( ( 0 [,] 1 ) –cn→ ℂ ) ) |
147 |
|
expcncf |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑦 ∈ ℂ ↦ ( 𝑦 ↑ 𝑁 ) ) ∈ ( ℂ –cn→ ℂ ) ) |
148 |
44 147
|
syl |
⊢ ( 𝜑 → ( 𝑦 ∈ ℂ ↦ ( 𝑦 ↑ 𝑁 ) ) ∈ ( ℂ –cn→ ℂ ) ) |
149 |
112 121 148 124 71
|
cncfcompt2 |
⊢ ( 𝜑 → ( 𝑥 ∈ ℂ ↦ ( ( 1 − 𝑥 ) ↑ 𝑁 ) ) ∈ ( ℂ –cn→ ℂ ) ) |
150 |
149
|
resclunitintvd |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 0 [,] 1 ) ↦ ( ( 1 − 𝑥 ) ↑ 𝑁 ) ) ∈ ( ( 0 [,] 1 ) –cn→ ℂ ) ) |
151 |
146 150
|
mulcncf |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 0 [,] 1 ) ↦ ( ( - 1 / 𝑁 ) · ( ( 1 − 𝑥 ) ↑ 𝑁 ) ) ) ∈ ( ( 0 [,] 1 ) –cn→ ℂ ) ) |
152 |
19 20 111 128 142 151
|
ftc2 |
⊢ ( 𝜑 → ∫ ( 0 (,) 1 ) ( ( ℝ D ( 𝑥 ∈ ( 0 [,] 1 ) ↦ ( ( - 1 / 𝑁 ) · ( ( 1 − 𝑥 ) ↑ 𝑁 ) ) ) ) ‘ 𝑡 ) d 𝑡 = ( ( ( 𝑥 ∈ ( 0 [,] 1 ) ↦ ( ( - 1 / 𝑁 ) · ( ( 1 − 𝑥 ) ↑ 𝑁 ) ) ) ‘ 1 ) − ( ( 𝑥 ∈ ( 0 [,] 1 ) ↦ ( ( - 1 / 𝑁 ) · ( ( 1 − 𝑥 ) ↑ 𝑁 ) ) ) ‘ 0 ) ) ) |
153 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 0 [,] 1 ) ↦ ( ( - 1 / 𝑁 ) · ( ( 1 − 𝑥 ) ↑ 𝑁 ) ) ) = ( 𝑥 ∈ ( 0 [,] 1 ) ↦ ( ( - 1 / 𝑁 ) · ( ( 1 − 𝑥 ) ↑ 𝑁 ) ) ) ) |
154 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 = 1 ) → 𝑥 = 1 ) |
155 |
154
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 = 1 ) → ( 1 − 𝑥 ) = ( 1 − 1 ) ) |
156 |
155 3
|
eqtrdi |
⊢ ( ( 𝜑 ∧ 𝑥 = 1 ) → ( 1 − 𝑥 ) = 0 ) |
157 |
156
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑥 = 1 ) → ( ( 1 − 𝑥 ) ↑ 𝑁 ) = ( 0 ↑ 𝑁 ) ) |
158 |
|
0exp |
⊢ ( 𝑁 ∈ ℕ → ( 0 ↑ 𝑁 ) = 0 ) |
159 |
1 158
|
syl |
⊢ ( 𝜑 → ( 0 ↑ 𝑁 ) = 0 ) |
160 |
159
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 = 1 ) → ( 0 ↑ 𝑁 ) = 0 ) |
161 |
157 160
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 = 1 ) → ( ( 1 − 𝑥 ) ↑ 𝑁 ) = 0 ) |
162 |
161
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 = 1 ) → ( ( - 1 / 𝑁 ) · ( ( 1 − 𝑥 ) ↑ 𝑁 ) ) = ( ( - 1 / 𝑁 ) · 0 ) ) |
163 |
78
|
mul01d |
⊢ ( 𝜑 → ( ( - 1 / 𝑁 ) · 0 ) = 0 ) |
164 |
163
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 = 1 ) → ( ( - 1 / 𝑁 ) · 0 ) = 0 ) |
165 |
162 164
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 = 1 ) → ( ( - 1 / 𝑁 ) · ( ( 1 − 𝑥 ) ↑ 𝑁 ) ) = 0 ) |
166 |
|
1elunit |
⊢ 1 ∈ ( 0 [,] 1 ) |
167 |
166
|
a1i |
⊢ ( 𝜑 → 1 ∈ ( 0 [,] 1 ) ) |
168 |
|
0cnd |
⊢ ( 𝜑 → 0 ∈ ℂ ) |
169 |
153 165 167 168
|
fvmptd |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ( 0 [,] 1 ) ↦ ( ( - 1 / 𝑁 ) · ( ( 1 − 𝑥 ) ↑ 𝑁 ) ) ) ‘ 1 ) = 0 ) |
170 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 = 0 ) → 𝑥 = 0 ) |
171 |
170
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 = 0 ) → ( 1 − 𝑥 ) = ( 1 − 0 ) ) |
172 |
|
1m0e1 |
⊢ ( 1 − 0 ) = 1 |
173 |
171 172
|
eqtrdi |
⊢ ( ( 𝜑 ∧ 𝑥 = 0 ) → ( 1 − 𝑥 ) = 1 ) |
174 |
173
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑥 = 0 ) → ( ( 1 − 𝑥 ) ↑ 𝑁 ) = ( 1 ↑ 𝑁 ) ) |
175 |
44
|
nn0zd |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
176 |
|
1exp |
⊢ ( 𝑁 ∈ ℤ → ( 1 ↑ 𝑁 ) = 1 ) |
177 |
175 176
|
syl |
⊢ ( 𝜑 → ( 1 ↑ 𝑁 ) = 1 ) |
178 |
177
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 = 0 ) → ( 1 ↑ 𝑁 ) = 1 ) |
179 |
174 178
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 = 0 ) → ( ( 1 − 𝑥 ) ↑ 𝑁 ) = 1 ) |
180 |
179
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 = 0 ) → ( ( - 1 / 𝑁 ) · ( ( 1 − 𝑥 ) ↑ 𝑁 ) ) = ( ( - 1 / 𝑁 ) · 1 ) ) |
181 |
78
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 = 0 ) → ( - 1 / 𝑁 ) ∈ ℂ ) |
182 |
181
|
mulid1d |
⊢ ( ( 𝜑 ∧ 𝑥 = 0 ) → ( ( - 1 / 𝑁 ) · 1 ) = ( - 1 / 𝑁 ) ) |
183 |
180 182
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 = 0 ) → ( ( - 1 / 𝑁 ) · ( ( 1 − 𝑥 ) ↑ 𝑁 ) ) = ( - 1 / 𝑁 ) ) |
184 |
|
0elunit |
⊢ 0 ∈ ( 0 [,] 1 ) |
185 |
184
|
a1i |
⊢ ( 𝜑 → 0 ∈ ( 0 [,] 1 ) ) |
186 |
153 183 185 78
|
fvmptd |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ( 0 [,] 1 ) ↦ ( ( - 1 / 𝑁 ) · ( ( 1 − 𝑥 ) ↑ 𝑁 ) ) ) ‘ 0 ) = ( - 1 / 𝑁 ) ) |
187 |
169 186
|
oveq12d |
⊢ ( 𝜑 → ( ( ( 𝑥 ∈ ( 0 [,] 1 ) ↦ ( ( - 1 / 𝑁 ) · ( ( 1 − 𝑥 ) ↑ 𝑁 ) ) ) ‘ 1 ) − ( ( 𝑥 ∈ ( 0 [,] 1 ) ↦ ( ( - 1 / 𝑁 ) · ( ( 1 − 𝑥 ) ↑ 𝑁 ) ) ) ‘ 0 ) ) = ( 0 − ( - 1 / 𝑁 ) ) ) |
188 |
152 187
|
eqtrd |
⊢ ( 𝜑 → ∫ ( 0 (,) 1 ) ( ( ℝ D ( 𝑥 ∈ ( 0 [,] 1 ) ↦ ( ( - 1 / 𝑁 ) · ( ( 1 − 𝑥 ) ↑ 𝑁 ) ) ) ) ‘ 𝑡 ) d 𝑡 = ( 0 − ( - 1 / 𝑁 ) ) ) |
189 |
|
df-neg |
⊢ - - ( 1 / 𝑁 ) = ( 0 − - ( 1 / 𝑁 ) ) |
190 |
189
|
a1i |
⊢ ( 𝜑 → - - ( 1 / 𝑁 ) = ( 0 − - ( 1 / 𝑁 ) ) ) |
191 |
61 76 77
|
divnegd |
⊢ ( 𝜑 → - ( 1 / 𝑁 ) = ( - 1 / 𝑁 ) ) |
192 |
191
|
oveq2d |
⊢ ( 𝜑 → ( 0 − - ( 1 / 𝑁 ) ) = ( 0 − ( - 1 / 𝑁 ) ) ) |
193 |
190 192
|
eqtr2d |
⊢ ( 𝜑 → ( 0 − ( - 1 / 𝑁 ) ) = - - ( 1 / 𝑁 ) ) |
194 |
76 77
|
reccld |
⊢ ( 𝜑 → ( 1 / 𝑁 ) ∈ ℂ ) |
195 |
194
|
negnegd |
⊢ ( 𝜑 → - - ( 1 / 𝑁 ) = ( 1 / 𝑁 ) ) |
196 |
193 195
|
eqtrd |
⊢ ( 𝜑 → ( 0 − ( - 1 / 𝑁 ) ) = ( 1 / 𝑁 ) ) |
197 |
188 196
|
eqtrd |
⊢ ( 𝜑 → ∫ ( 0 (,) 1 ) ( ( ℝ D ( 𝑥 ∈ ( 0 [,] 1 ) ↦ ( ( - 1 / 𝑁 ) · ( ( 1 − 𝑥 ) ↑ 𝑁 ) ) ) ) ‘ 𝑡 ) d 𝑡 = ( 1 / 𝑁 ) ) |
198 |
109 197
|
eqtr3d |
⊢ ( 𝜑 → ∫ ( 0 (,) 1 ) ( ( 𝑥 ∈ ( 0 (,) 1 ) ↦ ( ( 1 − 𝑥 ) ↑ ( 𝑁 − 1 ) ) ) ‘ 𝑡 ) d 𝑡 = ( 1 / 𝑁 ) ) |
199 |
37 198
|
eqtr3d |
⊢ ( 𝜑 → ∫ ( 0 (,) 1 ) ( ( 1 − 𝑡 ) ↑ ( 𝑁 − 1 ) ) d 𝑡 = ( 1 / 𝑁 ) ) |
200 |
22 199
|
eqtr3d |
⊢ ( 𝜑 → ∫ ( 0 [,] 1 ) ( ( 1 − 𝑡 ) ↑ ( 𝑁 − 1 ) ) d 𝑡 = ( 1 / 𝑁 ) ) |
201 |
|
bcn1 |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 C 1 ) = 𝑁 ) |
202 |
44 201
|
syl |
⊢ ( 𝜑 → ( 𝑁 C 1 ) = 𝑁 ) |
203 |
202
|
oveq2d |
⊢ ( 𝜑 → ( 1 · ( 𝑁 C 1 ) ) = ( 1 · 𝑁 ) ) |
204 |
76
|
mulid2d |
⊢ ( 𝜑 → ( 1 · 𝑁 ) = 𝑁 ) |
205 |
203 204
|
eqtrd |
⊢ ( 𝜑 → ( 1 · ( 𝑁 C 1 ) ) = 𝑁 ) |
206 |
205
|
oveq2d |
⊢ ( 𝜑 → ( 1 / ( 1 · ( 𝑁 C 1 ) ) ) = ( 1 / 𝑁 ) ) |
207 |
200 206
|
eqtr4d |
⊢ ( 𝜑 → ∫ ( 0 [,] 1 ) ( ( 1 − 𝑡 ) ↑ ( 𝑁 − 1 ) ) d 𝑡 = ( 1 / ( 1 · ( 𝑁 C 1 ) ) ) ) |
208 |
18 207
|
eqtrd |
⊢ ( 𝜑 → ∫ ( 0 [,] 1 ) ( ( 𝑡 ↑ ( 1 − 1 ) ) · ( ( 1 − 𝑡 ) ↑ ( 𝑁 − 1 ) ) ) d 𝑡 = ( 1 / ( 1 · ( 𝑁 C 1 ) ) ) ) |