Metamath Proof Explorer


Theorem bcm1k

Description: The proportion of one binomial coefficient to another with K decreased by 1. (Contributed by Mario Carneiro, 10-Mar-2014)

Ref Expression
Assertion bcm1k K1N(NK)=(NK1)NK1K

Proof

Step Hyp Ref Expression
1 elfzuz2 K1NN1
2 nnuz =1
3 1 2 eleqtrrdi K1NN
4 3 nnnn0d K1NN0
5 4 faccld K1NN!
6 5 nncnd K1NN!
7 fznn0sub K1NNK0
8 nn0p1nn NK0N-K+1
9 7 8 syl K1NN-K+1
10 9 nncnd K1NN-K+1
11 9 nnnn0d K1NN-K+10
12 11 faccld K1NN-K+1!
13 elfznn K1NK
14 nnm1nn0 KK10
15 faccl K10K1!
16 13 14 15 3syl K1NK1!
17 12 16 nnmulcld K1NN-K+1!K1!
18 nncn N-K+1!K1!N-K+1!K1!
19 nnne0 N-K+1!K1!N-K+1!K1!0
20 18 19 jca N-K+1!K1!N-K+1!K1!N-K+1!K1!0
21 17 20 syl K1NN-K+1!K1!N-K+1!K1!0
22 13 nncnd K1NK
23 13 nnne0d K1NK0
24 22 23 jca K1NKK0
25 divmuldiv N!N-K+1N-K+1!K1!N-K+1!K1!0KK0N!N-K+1!K1!N-K+1K=N!N-K+1N-K+1!K1!K
26 6 10 21 24 25 syl22anc K1NN!N-K+1!K1!N-K+1K=N!N-K+1N-K+1!K1!K
27 elfzel2 K1NN
28 27 zcnd K1NN
29 1cnd K1N1
30 28 22 29 subsubd K1NNK1=N-K+1
31 30 fveq2d K1NNK1!=N-K+1!
32 31 oveq1d K1NNK1!K1!=N-K+1!K1!
33 32 oveq2d K1NN!NK1!K1!=N!N-K+1!K1!
34 30 oveq1d K1NNK1K=N-K+1K
35 33 34 oveq12d K1NN!NK1!K1!NK1K=N!N-K+1!K1!N-K+1K
36 facp1 NK0N-K+1!=NK!N-K+1
37 7 36 syl K1NN-K+1!=NK!N-K+1
38 37 eqcomd K1NNK!N-K+1=N-K+1!
39 facnn2 KK!=K1!K
40 13 39 syl K1NK!=K1!K
41 38 40 oveq12d K1NNK!N-K+1K!=N-K+1!K1!K
42 7 faccld K1NNK!
43 42 nncnd K1NNK!
44 13 nnnn0d K1NK0
45 44 faccld K1NK!
46 45 nncnd K1NK!
47 43 46 10 mul32d K1NNK!K!N-K+1=NK!N-K+1K!
48 12 nncnd K1NN-K+1!
49 16 nncnd K1NK1!
50 48 49 22 mulassd K1NN-K+1!K1!K=N-K+1!K1!K
51 41 47 50 3eqtr4d K1NNK!K!N-K+1=N-K+1!K1!K
52 51 oveq2d K1NN!N-K+1NK!K!N-K+1=N!N-K+1N-K+1!K1!K
53 26 35 52 3eqtr4d K1NN!NK1!K1!NK1K=N!N-K+1NK!K!N-K+1
54 6 10 mulcomd K1NN!N-K+1=N-K+1N!
55 42 45 nnmulcld K1NNK!K!
56 55 nncnd K1NNK!K!
57 56 10 mulcomd K1NNK!K!N-K+1=N-K+1NK!K!
58 54 57 oveq12d K1NN!N-K+1NK!K!N-K+1=N-K+1N!N-K+1NK!K!
59 55 nnne0d K1NNK!K!0
60 9 nnne0d K1NN-K+10
61 6 56 10 59 60 divcan5d K1NN-K+1N!N-K+1NK!K!=N!NK!K!
62 53 58 61 3eqtrrd K1NN!NK!K!=N!NK1!K1!NK1K
63 fz1ssfz0 1N0N
64 63 sseli K1NK0N
65 bcval2 K0N(NK)=N!NK!K!
66 64 65 syl K1N(NK)=N!NK!K!
67 ax-1cn 1
68 npcan N1N-1+1=N
69 28 67 68 sylancl K1NN-1+1=N
70 peano2zm NN1
71 uzid N1N1N1
72 peano2uz N1N1N-1+1N1
73 27 70 71 72 4syl K1NN-1+1N1
74 69 73 eqeltrrd K1NNN1
75 fzss2 NN10N10N
76 74 75 syl K1N0N10N
77 elfzmlbm K1NK10N1
78 76 77 sseldd K1NK10N
79 bcval2 K10N(NK1)=N!NK1!K1!
80 78 79 syl K1N(NK1)=N!NK1!K1!
81 80 oveq1d K1N(NK1)NK1K=N!NK1!K1!NK1K
82 62 66 81 3eqtr4d K1N(NK)=(NK1)NK1K