Step |
Hyp |
Ref |
Expression |
1 |
|
elfzuz2 |
|- ( K e. ( 1 ... N ) -> N e. ( ZZ>= ` 1 ) ) |
2 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
3 |
1 2
|
eleqtrrdi |
|- ( K e. ( 1 ... N ) -> N e. NN ) |
4 |
3
|
nnnn0d |
|- ( K e. ( 1 ... N ) -> N e. NN0 ) |
5 |
4
|
faccld |
|- ( K e. ( 1 ... N ) -> ( ! ` N ) e. NN ) |
6 |
5
|
nncnd |
|- ( K e. ( 1 ... N ) -> ( ! ` N ) e. CC ) |
7 |
|
fznn0sub |
|- ( K e. ( 1 ... N ) -> ( N - K ) e. NN0 ) |
8 |
|
nn0p1nn |
|- ( ( N - K ) e. NN0 -> ( ( N - K ) + 1 ) e. NN ) |
9 |
7 8
|
syl |
|- ( K e. ( 1 ... N ) -> ( ( N - K ) + 1 ) e. NN ) |
10 |
9
|
nncnd |
|- ( K e. ( 1 ... N ) -> ( ( N - K ) + 1 ) e. CC ) |
11 |
9
|
nnnn0d |
|- ( K e. ( 1 ... N ) -> ( ( N - K ) + 1 ) e. NN0 ) |
12 |
11
|
faccld |
|- ( K e. ( 1 ... N ) -> ( ! ` ( ( N - K ) + 1 ) ) e. NN ) |
13 |
|
elfznn |
|- ( K e. ( 1 ... N ) -> K e. NN ) |
14 |
|
nnm1nn0 |
|- ( K e. NN -> ( K - 1 ) e. NN0 ) |
15 |
|
faccl |
|- ( ( K - 1 ) e. NN0 -> ( ! ` ( K - 1 ) ) e. NN ) |
16 |
13 14 15
|
3syl |
|- ( K e. ( 1 ... N ) -> ( ! ` ( K - 1 ) ) e. NN ) |
17 |
12 16
|
nnmulcld |
|- ( K e. ( 1 ... N ) -> ( ( ! ` ( ( N - K ) + 1 ) ) x. ( ! ` ( K - 1 ) ) ) e. NN ) |
18 |
|
nncn |
|- ( ( ( ! ` ( ( N - K ) + 1 ) ) x. ( ! ` ( K - 1 ) ) ) e. NN -> ( ( ! ` ( ( N - K ) + 1 ) ) x. ( ! ` ( K - 1 ) ) ) e. CC ) |
19 |
|
nnne0 |
|- ( ( ( ! ` ( ( N - K ) + 1 ) ) x. ( ! ` ( K - 1 ) ) ) e. NN -> ( ( ! ` ( ( N - K ) + 1 ) ) x. ( ! ` ( K - 1 ) ) ) =/= 0 ) |
20 |
18 19
|
jca |
|- ( ( ( ! ` ( ( N - K ) + 1 ) ) x. ( ! ` ( K - 1 ) ) ) e. NN -> ( ( ( ! ` ( ( N - K ) + 1 ) ) x. ( ! ` ( K - 1 ) ) ) e. CC /\ ( ( ! ` ( ( N - K ) + 1 ) ) x. ( ! ` ( K - 1 ) ) ) =/= 0 ) ) |
21 |
17 20
|
syl |
|- ( K e. ( 1 ... N ) -> ( ( ( ! ` ( ( N - K ) + 1 ) ) x. ( ! ` ( K - 1 ) ) ) e. CC /\ ( ( ! ` ( ( N - K ) + 1 ) ) x. ( ! ` ( K - 1 ) ) ) =/= 0 ) ) |
22 |
13
|
nncnd |
|- ( K e. ( 1 ... N ) -> K e. CC ) |
23 |
13
|
nnne0d |
|- ( K e. ( 1 ... N ) -> K =/= 0 ) |
24 |
22 23
|
jca |
|- ( K e. ( 1 ... N ) -> ( K e. CC /\ K =/= 0 ) ) |
25 |
|
divmuldiv |
|- ( ( ( ( ! ` N ) e. CC /\ ( ( N - K ) + 1 ) e. CC ) /\ ( ( ( ( ! ` ( ( N - K ) + 1 ) ) x. ( ! ` ( K - 1 ) ) ) e. CC /\ ( ( ! ` ( ( N - K ) + 1 ) ) x. ( ! ` ( K - 1 ) ) ) =/= 0 ) /\ ( K e. CC /\ K =/= 0 ) ) ) -> ( ( ( ! ` N ) / ( ( ! ` ( ( N - K ) + 1 ) ) x. ( ! ` ( K - 1 ) ) ) ) x. ( ( ( N - K ) + 1 ) / K ) ) = ( ( ( ! ` N ) x. ( ( N - K ) + 1 ) ) / ( ( ( ! ` ( ( N - K ) + 1 ) ) x. ( ! ` ( K - 1 ) ) ) x. K ) ) ) |
26 |
6 10 21 24 25
|
syl22anc |
|- ( K e. ( 1 ... N ) -> ( ( ( ! ` N ) / ( ( ! ` ( ( N - K ) + 1 ) ) x. ( ! ` ( K - 1 ) ) ) ) x. ( ( ( N - K ) + 1 ) / K ) ) = ( ( ( ! ` N ) x. ( ( N - K ) + 1 ) ) / ( ( ( ! ` ( ( N - K ) + 1 ) ) x. ( ! ` ( K - 1 ) ) ) x. K ) ) ) |
27 |
|
elfzel2 |
|- ( K e. ( 1 ... N ) -> N e. ZZ ) |
28 |
27
|
zcnd |
|- ( K e. ( 1 ... N ) -> N e. CC ) |
29 |
|
1cnd |
|- ( K e. ( 1 ... N ) -> 1 e. CC ) |
30 |
28 22 29
|
subsubd |
|- ( K e. ( 1 ... N ) -> ( N - ( K - 1 ) ) = ( ( N - K ) + 1 ) ) |
31 |
30
|
fveq2d |
|- ( K e. ( 1 ... N ) -> ( ! ` ( N - ( K - 1 ) ) ) = ( ! ` ( ( N - K ) + 1 ) ) ) |
32 |
31
|
oveq1d |
|- ( K e. ( 1 ... N ) -> ( ( ! ` ( N - ( K - 1 ) ) ) x. ( ! ` ( K - 1 ) ) ) = ( ( ! ` ( ( N - K ) + 1 ) ) x. ( ! ` ( K - 1 ) ) ) ) |
33 |
32
|
oveq2d |
|- ( K e. ( 1 ... N ) -> ( ( ! ` N ) / ( ( ! ` ( N - ( K - 1 ) ) ) x. ( ! ` ( K - 1 ) ) ) ) = ( ( ! ` N ) / ( ( ! ` ( ( N - K ) + 1 ) ) x. ( ! ` ( K - 1 ) ) ) ) ) |
34 |
30
|
oveq1d |
|- ( K e. ( 1 ... N ) -> ( ( N - ( K - 1 ) ) / K ) = ( ( ( N - K ) + 1 ) / K ) ) |
35 |
33 34
|
oveq12d |
|- ( K e. ( 1 ... N ) -> ( ( ( ! ` N ) / ( ( ! ` ( N - ( K - 1 ) ) ) x. ( ! ` ( K - 1 ) ) ) ) x. ( ( N - ( K - 1 ) ) / K ) ) = ( ( ( ! ` N ) / ( ( ! ` ( ( N - K ) + 1 ) ) x. ( ! ` ( K - 1 ) ) ) ) x. ( ( ( N - K ) + 1 ) / K ) ) ) |
36 |
|
facp1 |
|- ( ( N - K ) e. NN0 -> ( ! ` ( ( N - K ) + 1 ) ) = ( ( ! ` ( N - K ) ) x. ( ( N - K ) + 1 ) ) ) |
37 |
7 36
|
syl |
|- ( K e. ( 1 ... N ) -> ( ! ` ( ( N - K ) + 1 ) ) = ( ( ! ` ( N - K ) ) x. ( ( N - K ) + 1 ) ) ) |
38 |
37
|
eqcomd |
|- ( K e. ( 1 ... N ) -> ( ( ! ` ( N - K ) ) x. ( ( N - K ) + 1 ) ) = ( ! ` ( ( N - K ) + 1 ) ) ) |
39 |
|
facnn2 |
|- ( K e. NN -> ( ! ` K ) = ( ( ! ` ( K - 1 ) ) x. K ) ) |
40 |
13 39
|
syl |
|- ( K e. ( 1 ... N ) -> ( ! ` K ) = ( ( ! ` ( K - 1 ) ) x. K ) ) |
41 |
38 40
|
oveq12d |
|- ( K e. ( 1 ... N ) -> ( ( ( ! ` ( N - K ) ) x. ( ( N - K ) + 1 ) ) x. ( ! ` K ) ) = ( ( ! ` ( ( N - K ) + 1 ) ) x. ( ( ! ` ( K - 1 ) ) x. K ) ) ) |
42 |
7
|
faccld |
|- ( K e. ( 1 ... N ) -> ( ! ` ( N - K ) ) e. NN ) |
43 |
42
|
nncnd |
|- ( K e. ( 1 ... N ) -> ( ! ` ( N - K ) ) e. CC ) |
44 |
13
|
nnnn0d |
|- ( K e. ( 1 ... N ) -> K e. NN0 ) |
45 |
44
|
faccld |
|- ( K e. ( 1 ... N ) -> ( ! ` K ) e. NN ) |
46 |
45
|
nncnd |
|- ( K e. ( 1 ... N ) -> ( ! ` K ) e. CC ) |
47 |
43 46 10
|
mul32d |
|- ( K e. ( 1 ... N ) -> ( ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) x. ( ( N - K ) + 1 ) ) = ( ( ( ! ` ( N - K ) ) x. ( ( N - K ) + 1 ) ) x. ( ! ` K ) ) ) |
48 |
12
|
nncnd |
|- ( K e. ( 1 ... N ) -> ( ! ` ( ( N - K ) + 1 ) ) e. CC ) |
49 |
16
|
nncnd |
|- ( K e. ( 1 ... N ) -> ( ! ` ( K - 1 ) ) e. CC ) |
50 |
48 49 22
|
mulassd |
|- ( K e. ( 1 ... N ) -> ( ( ( ! ` ( ( N - K ) + 1 ) ) x. ( ! ` ( K - 1 ) ) ) x. K ) = ( ( ! ` ( ( N - K ) + 1 ) ) x. ( ( ! ` ( K - 1 ) ) x. K ) ) ) |
51 |
41 47 50
|
3eqtr4d |
|- ( K e. ( 1 ... N ) -> ( ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) x. ( ( N - K ) + 1 ) ) = ( ( ( ! ` ( ( N - K ) + 1 ) ) x. ( ! ` ( K - 1 ) ) ) x. K ) ) |
52 |
51
|
oveq2d |
|- ( K e. ( 1 ... N ) -> ( ( ( ! ` N ) x. ( ( N - K ) + 1 ) ) / ( ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) x. ( ( N - K ) + 1 ) ) ) = ( ( ( ! ` N ) x. ( ( N - K ) + 1 ) ) / ( ( ( ! ` ( ( N - K ) + 1 ) ) x. ( ! ` ( K - 1 ) ) ) x. K ) ) ) |
53 |
26 35 52
|
3eqtr4d |
|- ( K e. ( 1 ... N ) -> ( ( ( ! ` N ) / ( ( ! ` ( N - ( K - 1 ) ) ) x. ( ! ` ( K - 1 ) ) ) ) x. ( ( N - ( K - 1 ) ) / K ) ) = ( ( ( ! ` N ) x. ( ( N - K ) + 1 ) ) / ( ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) x. ( ( N - K ) + 1 ) ) ) ) |
54 |
6 10
|
mulcomd |
|- ( K e. ( 1 ... N ) -> ( ( ! ` N ) x. ( ( N - K ) + 1 ) ) = ( ( ( N - K ) + 1 ) x. ( ! ` N ) ) ) |
55 |
42 45
|
nnmulcld |
|- ( K e. ( 1 ... N ) -> ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) e. NN ) |
56 |
55
|
nncnd |
|- ( K e. ( 1 ... N ) -> ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) e. CC ) |
57 |
56 10
|
mulcomd |
|- ( K e. ( 1 ... N ) -> ( ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) x. ( ( N - K ) + 1 ) ) = ( ( ( N - K ) + 1 ) x. ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) ) ) |
58 |
54 57
|
oveq12d |
|- ( K e. ( 1 ... N ) -> ( ( ( ! ` N ) x. ( ( N - K ) + 1 ) ) / ( ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) x. ( ( N - K ) + 1 ) ) ) = ( ( ( ( N - K ) + 1 ) x. ( ! ` N ) ) / ( ( ( N - K ) + 1 ) x. ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) ) ) ) |
59 |
55
|
nnne0d |
|- ( K e. ( 1 ... N ) -> ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) =/= 0 ) |
60 |
9
|
nnne0d |
|- ( K e. ( 1 ... N ) -> ( ( N - K ) + 1 ) =/= 0 ) |
61 |
6 56 10 59 60
|
divcan5d |
|- ( K e. ( 1 ... N ) -> ( ( ( ( N - K ) + 1 ) x. ( ! ` N ) ) / ( ( ( N - K ) + 1 ) x. ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) ) ) = ( ( ! ` N ) / ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) ) ) |
62 |
53 58 61
|
3eqtrrd |
|- ( K e. ( 1 ... N ) -> ( ( ! ` N ) / ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) ) = ( ( ( ! ` N ) / ( ( ! ` ( N - ( K - 1 ) ) ) x. ( ! ` ( K - 1 ) ) ) ) x. ( ( N - ( K - 1 ) ) / K ) ) ) |
63 |
|
fz1ssfz0 |
|- ( 1 ... N ) C_ ( 0 ... N ) |
64 |
63
|
sseli |
|- ( K e. ( 1 ... N ) -> K e. ( 0 ... N ) ) |
65 |
|
bcval2 |
|- ( K e. ( 0 ... N ) -> ( N _C K ) = ( ( ! ` N ) / ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) ) ) |
66 |
64 65
|
syl |
|- ( K e. ( 1 ... N ) -> ( N _C K ) = ( ( ! ` N ) / ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) ) ) |
67 |
|
ax-1cn |
|- 1 e. CC |
68 |
|
npcan |
|- ( ( N e. CC /\ 1 e. CC ) -> ( ( N - 1 ) + 1 ) = N ) |
69 |
28 67 68
|
sylancl |
|- ( K e. ( 1 ... N ) -> ( ( N - 1 ) + 1 ) = N ) |
70 |
|
peano2zm |
|- ( N e. ZZ -> ( N - 1 ) e. ZZ ) |
71 |
|
uzid |
|- ( ( N - 1 ) e. ZZ -> ( N - 1 ) e. ( ZZ>= ` ( N - 1 ) ) ) |
72 |
|
peano2uz |
|- ( ( N - 1 ) e. ( ZZ>= ` ( N - 1 ) ) -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` ( N - 1 ) ) ) |
73 |
27 70 71 72
|
4syl |
|- ( K e. ( 1 ... N ) -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` ( N - 1 ) ) ) |
74 |
69 73
|
eqeltrrd |
|- ( K e. ( 1 ... N ) -> N e. ( ZZ>= ` ( N - 1 ) ) ) |
75 |
|
fzss2 |
|- ( N e. ( ZZ>= ` ( N - 1 ) ) -> ( 0 ... ( N - 1 ) ) C_ ( 0 ... N ) ) |
76 |
74 75
|
syl |
|- ( K e. ( 1 ... N ) -> ( 0 ... ( N - 1 ) ) C_ ( 0 ... N ) ) |
77 |
|
elfzmlbm |
|- ( K e. ( 1 ... N ) -> ( K - 1 ) e. ( 0 ... ( N - 1 ) ) ) |
78 |
76 77
|
sseldd |
|- ( K e. ( 1 ... N ) -> ( K - 1 ) e. ( 0 ... N ) ) |
79 |
|
bcval2 |
|- ( ( K - 1 ) e. ( 0 ... N ) -> ( N _C ( K - 1 ) ) = ( ( ! ` N ) / ( ( ! ` ( N - ( K - 1 ) ) ) x. ( ! ` ( K - 1 ) ) ) ) ) |
80 |
78 79
|
syl |
|- ( K e. ( 1 ... N ) -> ( N _C ( K - 1 ) ) = ( ( ! ` N ) / ( ( ! ` ( N - ( K - 1 ) ) ) x. ( ! ` ( K - 1 ) ) ) ) ) |
81 |
80
|
oveq1d |
|- ( K e. ( 1 ... N ) -> ( ( N _C ( K - 1 ) ) x. ( ( N - ( K - 1 ) ) / K ) ) = ( ( ( ! ` N ) / ( ( ! ` ( N - ( K - 1 ) ) ) x. ( ! ` ( K - 1 ) ) ) ) x. ( ( N - ( K - 1 ) ) / K ) ) ) |
82 |
62 66 81
|
3eqtr4d |
|- ( K e. ( 1 ... N ) -> ( N _C K ) = ( ( N _C ( K - 1 ) ) x. ( ( N - ( K - 1 ) ) / K ) ) ) |