| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elfzuz2 |
|- ( K e. ( 1 ... N ) -> N e. ( ZZ>= ` 1 ) ) |
| 2 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 3 |
1 2
|
eleqtrrdi |
|- ( K e. ( 1 ... N ) -> N e. NN ) |
| 4 |
3
|
nnnn0d |
|- ( K e. ( 1 ... N ) -> N e. NN0 ) |
| 5 |
4
|
faccld |
|- ( K e. ( 1 ... N ) -> ( ! ` N ) e. NN ) |
| 6 |
5
|
nncnd |
|- ( K e. ( 1 ... N ) -> ( ! ` N ) e. CC ) |
| 7 |
|
fznn0sub |
|- ( K e. ( 1 ... N ) -> ( N - K ) e. NN0 ) |
| 8 |
|
nn0p1nn |
|- ( ( N - K ) e. NN0 -> ( ( N - K ) + 1 ) e. NN ) |
| 9 |
7 8
|
syl |
|- ( K e. ( 1 ... N ) -> ( ( N - K ) + 1 ) e. NN ) |
| 10 |
9
|
nncnd |
|- ( K e. ( 1 ... N ) -> ( ( N - K ) + 1 ) e. CC ) |
| 11 |
9
|
nnnn0d |
|- ( K e. ( 1 ... N ) -> ( ( N - K ) + 1 ) e. NN0 ) |
| 12 |
11
|
faccld |
|- ( K e. ( 1 ... N ) -> ( ! ` ( ( N - K ) + 1 ) ) e. NN ) |
| 13 |
|
elfznn |
|- ( K e. ( 1 ... N ) -> K e. NN ) |
| 14 |
|
nnm1nn0 |
|- ( K e. NN -> ( K - 1 ) e. NN0 ) |
| 15 |
|
faccl |
|- ( ( K - 1 ) e. NN0 -> ( ! ` ( K - 1 ) ) e. NN ) |
| 16 |
13 14 15
|
3syl |
|- ( K e. ( 1 ... N ) -> ( ! ` ( K - 1 ) ) e. NN ) |
| 17 |
12 16
|
nnmulcld |
|- ( K e. ( 1 ... N ) -> ( ( ! ` ( ( N - K ) + 1 ) ) x. ( ! ` ( K - 1 ) ) ) e. NN ) |
| 18 |
|
nncn |
|- ( ( ( ! ` ( ( N - K ) + 1 ) ) x. ( ! ` ( K - 1 ) ) ) e. NN -> ( ( ! ` ( ( N - K ) + 1 ) ) x. ( ! ` ( K - 1 ) ) ) e. CC ) |
| 19 |
|
nnne0 |
|- ( ( ( ! ` ( ( N - K ) + 1 ) ) x. ( ! ` ( K - 1 ) ) ) e. NN -> ( ( ! ` ( ( N - K ) + 1 ) ) x. ( ! ` ( K - 1 ) ) ) =/= 0 ) |
| 20 |
18 19
|
jca |
|- ( ( ( ! ` ( ( N - K ) + 1 ) ) x. ( ! ` ( K - 1 ) ) ) e. NN -> ( ( ( ! ` ( ( N - K ) + 1 ) ) x. ( ! ` ( K - 1 ) ) ) e. CC /\ ( ( ! ` ( ( N - K ) + 1 ) ) x. ( ! ` ( K - 1 ) ) ) =/= 0 ) ) |
| 21 |
17 20
|
syl |
|- ( K e. ( 1 ... N ) -> ( ( ( ! ` ( ( N - K ) + 1 ) ) x. ( ! ` ( K - 1 ) ) ) e. CC /\ ( ( ! ` ( ( N - K ) + 1 ) ) x. ( ! ` ( K - 1 ) ) ) =/= 0 ) ) |
| 22 |
13
|
nncnd |
|- ( K e. ( 1 ... N ) -> K e. CC ) |
| 23 |
13
|
nnne0d |
|- ( K e. ( 1 ... N ) -> K =/= 0 ) |
| 24 |
22 23
|
jca |
|- ( K e. ( 1 ... N ) -> ( K e. CC /\ K =/= 0 ) ) |
| 25 |
|
divmuldiv |
|- ( ( ( ( ! ` N ) e. CC /\ ( ( N - K ) + 1 ) e. CC ) /\ ( ( ( ( ! ` ( ( N - K ) + 1 ) ) x. ( ! ` ( K - 1 ) ) ) e. CC /\ ( ( ! ` ( ( N - K ) + 1 ) ) x. ( ! ` ( K - 1 ) ) ) =/= 0 ) /\ ( K e. CC /\ K =/= 0 ) ) ) -> ( ( ( ! ` N ) / ( ( ! ` ( ( N - K ) + 1 ) ) x. ( ! ` ( K - 1 ) ) ) ) x. ( ( ( N - K ) + 1 ) / K ) ) = ( ( ( ! ` N ) x. ( ( N - K ) + 1 ) ) / ( ( ( ! ` ( ( N - K ) + 1 ) ) x. ( ! ` ( K - 1 ) ) ) x. K ) ) ) |
| 26 |
6 10 21 24 25
|
syl22anc |
|- ( K e. ( 1 ... N ) -> ( ( ( ! ` N ) / ( ( ! ` ( ( N - K ) + 1 ) ) x. ( ! ` ( K - 1 ) ) ) ) x. ( ( ( N - K ) + 1 ) / K ) ) = ( ( ( ! ` N ) x. ( ( N - K ) + 1 ) ) / ( ( ( ! ` ( ( N - K ) + 1 ) ) x. ( ! ` ( K - 1 ) ) ) x. K ) ) ) |
| 27 |
|
elfzel2 |
|- ( K e. ( 1 ... N ) -> N e. ZZ ) |
| 28 |
27
|
zcnd |
|- ( K e. ( 1 ... N ) -> N e. CC ) |
| 29 |
|
1cnd |
|- ( K e. ( 1 ... N ) -> 1 e. CC ) |
| 30 |
28 22 29
|
subsubd |
|- ( K e. ( 1 ... N ) -> ( N - ( K - 1 ) ) = ( ( N - K ) + 1 ) ) |
| 31 |
30
|
fveq2d |
|- ( K e. ( 1 ... N ) -> ( ! ` ( N - ( K - 1 ) ) ) = ( ! ` ( ( N - K ) + 1 ) ) ) |
| 32 |
31
|
oveq1d |
|- ( K e. ( 1 ... N ) -> ( ( ! ` ( N - ( K - 1 ) ) ) x. ( ! ` ( K - 1 ) ) ) = ( ( ! ` ( ( N - K ) + 1 ) ) x. ( ! ` ( K - 1 ) ) ) ) |
| 33 |
32
|
oveq2d |
|- ( K e. ( 1 ... N ) -> ( ( ! ` N ) / ( ( ! ` ( N - ( K - 1 ) ) ) x. ( ! ` ( K - 1 ) ) ) ) = ( ( ! ` N ) / ( ( ! ` ( ( N - K ) + 1 ) ) x. ( ! ` ( K - 1 ) ) ) ) ) |
| 34 |
30
|
oveq1d |
|- ( K e. ( 1 ... N ) -> ( ( N - ( K - 1 ) ) / K ) = ( ( ( N - K ) + 1 ) / K ) ) |
| 35 |
33 34
|
oveq12d |
|- ( K e. ( 1 ... N ) -> ( ( ( ! ` N ) / ( ( ! ` ( N - ( K - 1 ) ) ) x. ( ! ` ( K - 1 ) ) ) ) x. ( ( N - ( K - 1 ) ) / K ) ) = ( ( ( ! ` N ) / ( ( ! ` ( ( N - K ) + 1 ) ) x. ( ! ` ( K - 1 ) ) ) ) x. ( ( ( N - K ) + 1 ) / K ) ) ) |
| 36 |
|
facp1 |
|- ( ( N - K ) e. NN0 -> ( ! ` ( ( N - K ) + 1 ) ) = ( ( ! ` ( N - K ) ) x. ( ( N - K ) + 1 ) ) ) |
| 37 |
7 36
|
syl |
|- ( K e. ( 1 ... N ) -> ( ! ` ( ( N - K ) + 1 ) ) = ( ( ! ` ( N - K ) ) x. ( ( N - K ) + 1 ) ) ) |
| 38 |
37
|
eqcomd |
|- ( K e. ( 1 ... N ) -> ( ( ! ` ( N - K ) ) x. ( ( N - K ) + 1 ) ) = ( ! ` ( ( N - K ) + 1 ) ) ) |
| 39 |
|
facnn2 |
|- ( K e. NN -> ( ! ` K ) = ( ( ! ` ( K - 1 ) ) x. K ) ) |
| 40 |
13 39
|
syl |
|- ( K e. ( 1 ... N ) -> ( ! ` K ) = ( ( ! ` ( K - 1 ) ) x. K ) ) |
| 41 |
38 40
|
oveq12d |
|- ( K e. ( 1 ... N ) -> ( ( ( ! ` ( N - K ) ) x. ( ( N - K ) + 1 ) ) x. ( ! ` K ) ) = ( ( ! ` ( ( N - K ) + 1 ) ) x. ( ( ! ` ( K - 1 ) ) x. K ) ) ) |
| 42 |
7
|
faccld |
|- ( K e. ( 1 ... N ) -> ( ! ` ( N - K ) ) e. NN ) |
| 43 |
42
|
nncnd |
|- ( K e. ( 1 ... N ) -> ( ! ` ( N - K ) ) e. CC ) |
| 44 |
13
|
nnnn0d |
|- ( K e. ( 1 ... N ) -> K e. NN0 ) |
| 45 |
44
|
faccld |
|- ( K e. ( 1 ... N ) -> ( ! ` K ) e. NN ) |
| 46 |
45
|
nncnd |
|- ( K e. ( 1 ... N ) -> ( ! ` K ) e. CC ) |
| 47 |
43 46 10
|
mul32d |
|- ( K e. ( 1 ... N ) -> ( ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) x. ( ( N - K ) + 1 ) ) = ( ( ( ! ` ( N - K ) ) x. ( ( N - K ) + 1 ) ) x. ( ! ` K ) ) ) |
| 48 |
12
|
nncnd |
|- ( K e. ( 1 ... N ) -> ( ! ` ( ( N - K ) + 1 ) ) e. CC ) |
| 49 |
16
|
nncnd |
|- ( K e. ( 1 ... N ) -> ( ! ` ( K - 1 ) ) e. CC ) |
| 50 |
48 49 22
|
mulassd |
|- ( K e. ( 1 ... N ) -> ( ( ( ! ` ( ( N - K ) + 1 ) ) x. ( ! ` ( K - 1 ) ) ) x. K ) = ( ( ! ` ( ( N - K ) + 1 ) ) x. ( ( ! ` ( K - 1 ) ) x. K ) ) ) |
| 51 |
41 47 50
|
3eqtr4d |
|- ( K e. ( 1 ... N ) -> ( ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) x. ( ( N - K ) + 1 ) ) = ( ( ( ! ` ( ( N - K ) + 1 ) ) x. ( ! ` ( K - 1 ) ) ) x. K ) ) |
| 52 |
51
|
oveq2d |
|- ( K e. ( 1 ... N ) -> ( ( ( ! ` N ) x. ( ( N - K ) + 1 ) ) / ( ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) x. ( ( N - K ) + 1 ) ) ) = ( ( ( ! ` N ) x. ( ( N - K ) + 1 ) ) / ( ( ( ! ` ( ( N - K ) + 1 ) ) x. ( ! ` ( K - 1 ) ) ) x. K ) ) ) |
| 53 |
26 35 52
|
3eqtr4d |
|- ( K e. ( 1 ... N ) -> ( ( ( ! ` N ) / ( ( ! ` ( N - ( K - 1 ) ) ) x. ( ! ` ( K - 1 ) ) ) ) x. ( ( N - ( K - 1 ) ) / K ) ) = ( ( ( ! ` N ) x. ( ( N - K ) + 1 ) ) / ( ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) x. ( ( N - K ) + 1 ) ) ) ) |
| 54 |
6 10
|
mulcomd |
|- ( K e. ( 1 ... N ) -> ( ( ! ` N ) x. ( ( N - K ) + 1 ) ) = ( ( ( N - K ) + 1 ) x. ( ! ` N ) ) ) |
| 55 |
42 45
|
nnmulcld |
|- ( K e. ( 1 ... N ) -> ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) e. NN ) |
| 56 |
55
|
nncnd |
|- ( K e. ( 1 ... N ) -> ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) e. CC ) |
| 57 |
56 10
|
mulcomd |
|- ( K e. ( 1 ... N ) -> ( ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) x. ( ( N - K ) + 1 ) ) = ( ( ( N - K ) + 1 ) x. ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) ) ) |
| 58 |
54 57
|
oveq12d |
|- ( K e. ( 1 ... N ) -> ( ( ( ! ` N ) x. ( ( N - K ) + 1 ) ) / ( ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) x. ( ( N - K ) + 1 ) ) ) = ( ( ( ( N - K ) + 1 ) x. ( ! ` N ) ) / ( ( ( N - K ) + 1 ) x. ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) ) ) ) |
| 59 |
55
|
nnne0d |
|- ( K e. ( 1 ... N ) -> ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) =/= 0 ) |
| 60 |
9
|
nnne0d |
|- ( K e. ( 1 ... N ) -> ( ( N - K ) + 1 ) =/= 0 ) |
| 61 |
6 56 10 59 60
|
divcan5d |
|- ( K e. ( 1 ... N ) -> ( ( ( ( N - K ) + 1 ) x. ( ! ` N ) ) / ( ( ( N - K ) + 1 ) x. ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) ) ) = ( ( ! ` N ) / ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) ) ) |
| 62 |
53 58 61
|
3eqtrrd |
|- ( K e. ( 1 ... N ) -> ( ( ! ` N ) / ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) ) = ( ( ( ! ` N ) / ( ( ! ` ( N - ( K - 1 ) ) ) x. ( ! ` ( K - 1 ) ) ) ) x. ( ( N - ( K - 1 ) ) / K ) ) ) |
| 63 |
|
fz1ssfz0 |
|- ( 1 ... N ) C_ ( 0 ... N ) |
| 64 |
63
|
sseli |
|- ( K e. ( 1 ... N ) -> K e. ( 0 ... N ) ) |
| 65 |
|
bcval2 |
|- ( K e. ( 0 ... N ) -> ( N _C K ) = ( ( ! ` N ) / ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) ) ) |
| 66 |
64 65
|
syl |
|- ( K e. ( 1 ... N ) -> ( N _C K ) = ( ( ! ` N ) / ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) ) ) |
| 67 |
|
ax-1cn |
|- 1 e. CC |
| 68 |
|
npcan |
|- ( ( N e. CC /\ 1 e. CC ) -> ( ( N - 1 ) + 1 ) = N ) |
| 69 |
28 67 68
|
sylancl |
|- ( K e. ( 1 ... N ) -> ( ( N - 1 ) + 1 ) = N ) |
| 70 |
|
peano2zm |
|- ( N e. ZZ -> ( N - 1 ) e. ZZ ) |
| 71 |
|
uzid |
|- ( ( N - 1 ) e. ZZ -> ( N - 1 ) e. ( ZZ>= ` ( N - 1 ) ) ) |
| 72 |
|
peano2uz |
|- ( ( N - 1 ) e. ( ZZ>= ` ( N - 1 ) ) -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` ( N - 1 ) ) ) |
| 73 |
27 70 71 72
|
4syl |
|- ( K e. ( 1 ... N ) -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` ( N - 1 ) ) ) |
| 74 |
69 73
|
eqeltrrd |
|- ( K e. ( 1 ... N ) -> N e. ( ZZ>= ` ( N - 1 ) ) ) |
| 75 |
|
fzss2 |
|- ( N e. ( ZZ>= ` ( N - 1 ) ) -> ( 0 ... ( N - 1 ) ) C_ ( 0 ... N ) ) |
| 76 |
74 75
|
syl |
|- ( K e. ( 1 ... N ) -> ( 0 ... ( N - 1 ) ) C_ ( 0 ... N ) ) |
| 77 |
|
elfzmlbm |
|- ( K e. ( 1 ... N ) -> ( K - 1 ) e. ( 0 ... ( N - 1 ) ) ) |
| 78 |
76 77
|
sseldd |
|- ( K e. ( 1 ... N ) -> ( K - 1 ) e. ( 0 ... N ) ) |
| 79 |
|
bcval2 |
|- ( ( K - 1 ) e. ( 0 ... N ) -> ( N _C ( K - 1 ) ) = ( ( ! ` N ) / ( ( ! ` ( N - ( K - 1 ) ) ) x. ( ! ` ( K - 1 ) ) ) ) ) |
| 80 |
78 79
|
syl |
|- ( K e. ( 1 ... N ) -> ( N _C ( K - 1 ) ) = ( ( ! ` N ) / ( ( ! ` ( N - ( K - 1 ) ) ) x. ( ! ` ( K - 1 ) ) ) ) ) |
| 81 |
80
|
oveq1d |
|- ( K e. ( 1 ... N ) -> ( ( N _C ( K - 1 ) ) x. ( ( N - ( K - 1 ) ) / K ) ) = ( ( ( ! ` N ) / ( ( ! ` ( N - ( K - 1 ) ) ) x. ( ! ` ( K - 1 ) ) ) ) x. ( ( N - ( K - 1 ) ) / K ) ) ) |
| 82 |
62 66 81
|
3eqtr4d |
|- ( K e. ( 1 ... N ) -> ( N _C K ) = ( ( N _C ( K - 1 ) ) x. ( ( N - ( K - 1 ) ) / K ) ) ) |