Step |
Hyp |
Ref |
Expression |
1 |
|
lcmineqlem13.1 |
|- F = S. ( 0 [,] 1 ) ( ( x ^ ( M - 1 ) ) x. ( ( 1 - x ) ^ ( N - M ) ) ) _d x |
2 |
|
lcmineqlem13.2 |
|- ( ph -> M e. NN ) |
3 |
|
lcmineqlem13.3 |
|- ( ph -> N e. NN ) |
4 |
|
lcmineqlem13.4 |
|- ( ph -> M <_ N ) |
5 |
2
|
nnzd |
|- ( ph -> M e. ZZ ) |
6 |
|
nnge1 |
|- ( M e. NN -> 1 <_ M ) |
7 |
2 6
|
syl |
|- ( ph -> 1 <_ M ) |
8 |
5 7 4
|
3jca |
|- ( ph -> ( M e. ZZ /\ 1 <_ M /\ M <_ N ) ) |
9 |
|
oveq1 |
|- ( i = 1 -> ( i - 1 ) = ( 1 - 1 ) ) |
10 |
9
|
oveq2d |
|- ( i = 1 -> ( x ^ ( i - 1 ) ) = ( x ^ ( 1 - 1 ) ) ) |
11 |
|
oveq2 |
|- ( i = 1 -> ( N - i ) = ( N - 1 ) ) |
12 |
11
|
oveq2d |
|- ( i = 1 -> ( ( 1 - x ) ^ ( N - i ) ) = ( ( 1 - x ) ^ ( N - 1 ) ) ) |
13 |
10 12
|
oveq12d |
|- ( i = 1 -> ( ( x ^ ( i - 1 ) ) x. ( ( 1 - x ) ^ ( N - i ) ) ) = ( ( x ^ ( 1 - 1 ) ) x. ( ( 1 - x ) ^ ( N - 1 ) ) ) ) |
14 |
13
|
adantr |
|- ( ( i = 1 /\ x e. ( 0 [,] 1 ) ) -> ( ( x ^ ( i - 1 ) ) x. ( ( 1 - x ) ^ ( N - i ) ) ) = ( ( x ^ ( 1 - 1 ) ) x. ( ( 1 - x ) ^ ( N - 1 ) ) ) ) |
15 |
14
|
itgeq2dv |
|- ( i = 1 -> S. ( 0 [,] 1 ) ( ( x ^ ( i - 1 ) ) x. ( ( 1 - x ) ^ ( N - i ) ) ) _d x = S. ( 0 [,] 1 ) ( ( x ^ ( 1 - 1 ) ) x. ( ( 1 - x ) ^ ( N - 1 ) ) ) _d x ) |
16 |
|
id |
|- ( i = 1 -> i = 1 ) |
17 |
|
oveq2 |
|- ( i = 1 -> ( N _C i ) = ( N _C 1 ) ) |
18 |
16 17
|
oveq12d |
|- ( i = 1 -> ( i x. ( N _C i ) ) = ( 1 x. ( N _C 1 ) ) ) |
19 |
18
|
oveq2d |
|- ( i = 1 -> ( 1 / ( i x. ( N _C i ) ) ) = ( 1 / ( 1 x. ( N _C 1 ) ) ) ) |
20 |
15 19
|
eqeq12d |
|- ( i = 1 -> ( S. ( 0 [,] 1 ) ( ( x ^ ( i - 1 ) ) x. ( ( 1 - x ) ^ ( N - i ) ) ) _d x = ( 1 / ( i x. ( N _C i ) ) ) <-> S. ( 0 [,] 1 ) ( ( x ^ ( 1 - 1 ) ) x. ( ( 1 - x ) ^ ( N - 1 ) ) ) _d x = ( 1 / ( 1 x. ( N _C 1 ) ) ) ) ) |
21 |
|
oveq1 |
|- ( i = m -> ( i - 1 ) = ( m - 1 ) ) |
22 |
21
|
oveq2d |
|- ( i = m -> ( x ^ ( i - 1 ) ) = ( x ^ ( m - 1 ) ) ) |
23 |
|
oveq2 |
|- ( i = m -> ( N - i ) = ( N - m ) ) |
24 |
23
|
oveq2d |
|- ( i = m -> ( ( 1 - x ) ^ ( N - i ) ) = ( ( 1 - x ) ^ ( N - m ) ) ) |
25 |
22 24
|
oveq12d |
|- ( i = m -> ( ( x ^ ( i - 1 ) ) x. ( ( 1 - x ) ^ ( N - i ) ) ) = ( ( x ^ ( m - 1 ) ) x. ( ( 1 - x ) ^ ( N - m ) ) ) ) |
26 |
25
|
adantr |
|- ( ( i = m /\ x e. ( 0 [,] 1 ) ) -> ( ( x ^ ( i - 1 ) ) x. ( ( 1 - x ) ^ ( N - i ) ) ) = ( ( x ^ ( m - 1 ) ) x. ( ( 1 - x ) ^ ( N - m ) ) ) ) |
27 |
26
|
itgeq2dv |
|- ( i = m -> S. ( 0 [,] 1 ) ( ( x ^ ( i - 1 ) ) x. ( ( 1 - x ) ^ ( N - i ) ) ) _d x = S. ( 0 [,] 1 ) ( ( x ^ ( m - 1 ) ) x. ( ( 1 - x ) ^ ( N - m ) ) ) _d x ) |
28 |
|
id |
|- ( i = m -> i = m ) |
29 |
|
oveq2 |
|- ( i = m -> ( N _C i ) = ( N _C m ) ) |
30 |
28 29
|
oveq12d |
|- ( i = m -> ( i x. ( N _C i ) ) = ( m x. ( N _C m ) ) ) |
31 |
30
|
oveq2d |
|- ( i = m -> ( 1 / ( i x. ( N _C i ) ) ) = ( 1 / ( m x. ( N _C m ) ) ) ) |
32 |
27 31
|
eqeq12d |
|- ( i = m -> ( S. ( 0 [,] 1 ) ( ( x ^ ( i - 1 ) ) x. ( ( 1 - x ) ^ ( N - i ) ) ) _d x = ( 1 / ( i x. ( N _C i ) ) ) <-> S. ( 0 [,] 1 ) ( ( x ^ ( m - 1 ) ) x. ( ( 1 - x ) ^ ( N - m ) ) ) _d x = ( 1 / ( m x. ( N _C m ) ) ) ) ) |
33 |
|
oveq1 |
|- ( i = ( m + 1 ) -> ( i - 1 ) = ( ( m + 1 ) - 1 ) ) |
34 |
33
|
oveq2d |
|- ( i = ( m + 1 ) -> ( x ^ ( i - 1 ) ) = ( x ^ ( ( m + 1 ) - 1 ) ) ) |
35 |
|
oveq2 |
|- ( i = ( m + 1 ) -> ( N - i ) = ( N - ( m + 1 ) ) ) |
36 |
35
|
oveq2d |
|- ( i = ( m + 1 ) -> ( ( 1 - x ) ^ ( N - i ) ) = ( ( 1 - x ) ^ ( N - ( m + 1 ) ) ) ) |
37 |
34 36
|
oveq12d |
|- ( i = ( m + 1 ) -> ( ( x ^ ( i - 1 ) ) x. ( ( 1 - x ) ^ ( N - i ) ) ) = ( ( x ^ ( ( m + 1 ) - 1 ) ) x. ( ( 1 - x ) ^ ( N - ( m + 1 ) ) ) ) ) |
38 |
37
|
adantr |
|- ( ( i = ( m + 1 ) /\ x e. ( 0 [,] 1 ) ) -> ( ( x ^ ( i - 1 ) ) x. ( ( 1 - x ) ^ ( N - i ) ) ) = ( ( x ^ ( ( m + 1 ) - 1 ) ) x. ( ( 1 - x ) ^ ( N - ( m + 1 ) ) ) ) ) |
39 |
38
|
itgeq2dv |
|- ( i = ( m + 1 ) -> S. ( 0 [,] 1 ) ( ( x ^ ( i - 1 ) ) x. ( ( 1 - x ) ^ ( N - i ) ) ) _d x = S. ( 0 [,] 1 ) ( ( x ^ ( ( m + 1 ) - 1 ) ) x. ( ( 1 - x ) ^ ( N - ( m + 1 ) ) ) ) _d x ) |
40 |
|
id |
|- ( i = ( m + 1 ) -> i = ( m + 1 ) ) |
41 |
|
oveq2 |
|- ( i = ( m + 1 ) -> ( N _C i ) = ( N _C ( m + 1 ) ) ) |
42 |
40 41
|
oveq12d |
|- ( i = ( m + 1 ) -> ( i x. ( N _C i ) ) = ( ( m + 1 ) x. ( N _C ( m + 1 ) ) ) ) |
43 |
42
|
oveq2d |
|- ( i = ( m + 1 ) -> ( 1 / ( i x. ( N _C i ) ) ) = ( 1 / ( ( m + 1 ) x. ( N _C ( m + 1 ) ) ) ) ) |
44 |
39 43
|
eqeq12d |
|- ( i = ( m + 1 ) -> ( S. ( 0 [,] 1 ) ( ( x ^ ( i - 1 ) ) x. ( ( 1 - x ) ^ ( N - i ) ) ) _d x = ( 1 / ( i x. ( N _C i ) ) ) <-> S. ( 0 [,] 1 ) ( ( x ^ ( ( m + 1 ) - 1 ) ) x. ( ( 1 - x ) ^ ( N - ( m + 1 ) ) ) ) _d x = ( 1 / ( ( m + 1 ) x. ( N _C ( m + 1 ) ) ) ) ) ) |
45 |
|
oveq1 |
|- ( i = M -> ( i - 1 ) = ( M - 1 ) ) |
46 |
45
|
oveq2d |
|- ( i = M -> ( x ^ ( i - 1 ) ) = ( x ^ ( M - 1 ) ) ) |
47 |
|
oveq2 |
|- ( i = M -> ( N - i ) = ( N - M ) ) |
48 |
47
|
oveq2d |
|- ( i = M -> ( ( 1 - x ) ^ ( N - i ) ) = ( ( 1 - x ) ^ ( N - M ) ) ) |
49 |
46 48
|
oveq12d |
|- ( i = M -> ( ( x ^ ( i - 1 ) ) x. ( ( 1 - x ) ^ ( N - i ) ) ) = ( ( x ^ ( M - 1 ) ) x. ( ( 1 - x ) ^ ( N - M ) ) ) ) |
50 |
49
|
adantr |
|- ( ( i = M /\ x e. ( 0 [,] 1 ) ) -> ( ( x ^ ( i - 1 ) ) x. ( ( 1 - x ) ^ ( N - i ) ) ) = ( ( x ^ ( M - 1 ) ) x. ( ( 1 - x ) ^ ( N - M ) ) ) ) |
51 |
50
|
itgeq2dv |
|- ( i = M -> S. ( 0 [,] 1 ) ( ( x ^ ( i - 1 ) ) x. ( ( 1 - x ) ^ ( N - i ) ) ) _d x = S. ( 0 [,] 1 ) ( ( x ^ ( M - 1 ) ) x. ( ( 1 - x ) ^ ( N - M ) ) ) _d x ) |
52 |
|
id |
|- ( i = M -> i = M ) |
53 |
|
oveq2 |
|- ( i = M -> ( N _C i ) = ( N _C M ) ) |
54 |
52 53
|
oveq12d |
|- ( i = M -> ( i x. ( N _C i ) ) = ( M x. ( N _C M ) ) ) |
55 |
54
|
oveq2d |
|- ( i = M -> ( 1 / ( i x. ( N _C i ) ) ) = ( 1 / ( M x. ( N _C M ) ) ) ) |
56 |
51 55
|
eqeq12d |
|- ( i = M -> ( S. ( 0 [,] 1 ) ( ( x ^ ( i - 1 ) ) x. ( ( 1 - x ) ^ ( N - i ) ) ) _d x = ( 1 / ( i x. ( N _C i ) ) ) <-> S. ( 0 [,] 1 ) ( ( x ^ ( M - 1 ) ) x. ( ( 1 - x ) ^ ( N - M ) ) ) _d x = ( 1 / ( M x. ( N _C M ) ) ) ) ) |
57 |
3
|
lcmineqlem12 |
|- ( ph -> S. ( 0 [,] 1 ) ( ( x ^ ( 1 - 1 ) ) x. ( ( 1 - x ) ^ ( N - 1 ) ) ) _d x = ( 1 / ( 1 x. ( N _C 1 ) ) ) ) |
58 |
|
elnnz1 |
|- ( m e. NN <-> ( m e. ZZ /\ 1 <_ m ) ) |
59 |
58
|
biimpri |
|- ( ( m e. ZZ /\ 1 <_ m ) -> m e. NN ) |
60 |
59
|
3adant3 |
|- ( ( m e. ZZ /\ 1 <_ m /\ m < N ) -> m e. NN ) |
61 |
60
|
adantl |
|- ( ( ph /\ ( m e. ZZ /\ 1 <_ m /\ m < N ) ) -> m e. NN ) |
62 |
3
|
adantr |
|- ( ( ph /\ ( m e. ZZ /\ 1 <_ m /\ m < N ) ) -> N e. NN ) |
63 |
|
simpr3 |
|- ( ( ph /\ ( m e. ZZ /\ 1 <_ m /\ m < N ) ) -> m < N ) |
64 |
61 62 63
|
lcmineqlem10 |
|- ( ( ph /\ ( m e. ZZ /\ 1 <_ m /\ m < N ) ) -> S. ( 0 [,] 1 ) ( ( x ^ ( ( m + 1 ) - 1 ) ) x. ( ( 1 - x ) ^ ( N - ( m + 1 ) ) ) ) _d x = ( ( m / ( N - m ) ) x. S. ( 0 [,] 1 ) ( ( x ^ ( m - 1 ) ) x. ( ( 1 - x ) ^ ( N - m ) ) ) _d x ) ) |
65 |
64
|
3adant3 |
|- ( ( ph /\ ( m e. ZZ /\ 1 <_ m /\ m < N ) /\ S. ( 0 [,] 1 ) ( ( x ^ ( m - 1 ) ) x. ( ( 1 - x ) ^ ( N - m ) ) ) _d x = ( 1 / ( m x. ( N _C m ) ) ) ) -> S. ( 0 [,] 1 ) ( ( x ^ ( ( m + 1 ) - 1 ) ) x. ( ( 1 - x ) ^ ( N - ( m + 1 ) ) ) ) _d x = ( ( m / ( N - m ) ) x. S. ( 0 [,] 1 ) ( ( x ^ ( m - 1 ) ) x. ( ( 1 - x ) ^ ( N - m ) ) ) _d x ) ) |
66 |
|
oveq2 |
|- ( S. ( 0 [,] 1 ) ( ( x ^ ( m - 1 ) ) x. ( ( 1 - x ) ^ ( N - m ) ) ) _d x = ( 1 / ( m x. ( N _C m ) ) ) -> ( ( m / ( N - m ) ) x. S. ( 0 [,] 1 ) ( ( x ^ ( m - 1 ) ) x. ( ( 1 - x ) ^ ( N - m ) ) ) _d x ) = ( ( m / ( N - m ) ) x. ( 1 / ( m x. ( N _C m ) ) ) ) ) |
67 |
66
|
3ad2ant3 |
|- ( ( ph /\ ( m e. ZZ /\ 1 <_ m /\ m < N ) /\ S. ( 0 [,] 1 ) ( ( x ^ ( m - 1 ) ) x. ( ( 1 - x ) ^ ( N - m ) ) ) _d x = ( 1 / ( m x. ( N _C m ) ) ) ) -> ( ( m / ( N - m ) ) x. S. ( 0 [,] 1 ) ( ( x ^ ( m - 1 ) ) x. ( ( 1 - x ) ^ ( N - m ) ) ) _d x ) = ( ( m / ( N - m ) ) x. ( 1 / ( m x. ( N _C m ) ) ) ) ) |
68 |
65 67
|
eqtrd |
|- ( ( ph /\ ( m e. ZZ /\ 1 <_ m /\ m < N ) /\ S. ( 0 [,] 1 ) ( ( x ^ ( m - 1 ) ) x. ( ( 1 - x ) ^ ( N - m ) ) ) _d x = ( 1 / ( m x. ( N _C m ) ) ) ) -> S. ( 0 [,] 1 ) ( ( x ^ ( ( m + 1 ) - 1 ) ) x. ( ( 1 - x ) ^ ( N - ( m + 1 ) ) ) ) _d x = ( ( m / ( N - m ) ) x. ( 1 / ( m x. ( N _C m ) ) ) ) ) |
69 |
61 62 63
|
lcmineqlem11 |
|- ( ( ph /\ ( m e. ZZ /\ 1 <_ m /\ m < N ) ) -> ( 1 / ( ( m + 1 ) x. ( N _C ( m + 1 ) ) ) ) = ( ( m / ( N - m ) ) x. ( 1 / ( m x. ( N _C m ) ) ) ) ) |
70 |
69
|
3adant3 |
|- ( ( ph /\ ( m e. ZZ /\ 1 <_ m /\ m < N ) /\ S. ( 0 [,] 1 ) ( ( x ^ ( m - 1 ) ) x. ( ( 1 - x ) ^ ( N - m ) ) ) _d x = ( 1 / ( m x. ( N _C m ) ) ) ) -> ( 1 / ( ( m + 1 ) x. ( N _C ( m + 1 ) ) ) ) = ( ( m / ( N - m ) ) x. ( 1 / ( m x. ( N _C m ) ) ) ) ) |
71 |
68 70
|
eqtr4d |
|- ( ( ph /\ ( m e. ZZ /\ 1 <_ m /\ m < N ) /\ S. ( 0 [,] 1 ) ( ( x ^ ( m - 1 ) ) x. ( ( 1 - x ) ^ ( N - m ) ) ) _d x = ( 1 / ( m x. ( N _C m ) ) ) ) -> S. ( 0 [,] 1 ) ( ( x ^ ( ( m + 1 ) - 1 ) ) x. ( ( 1 - x ) ^ ( N - ( m + 1 ) ) ) ) _d x = ( 1 / ( ( m + 1 ) x. ( N _C ( m + 1 ) ) ) ) ) |
72 |
|
1zzd |
|- ( ph -> 1 e. ZZ ) |
73 |
3
|
nnzd |
|- ( ph -> N e. ZZ ) |
74 |
3
|
nnge1d |
|- ( ph -> 1 <_ N ) |
75 |
20 32 44 56 57 71 72 73 74
|
fzindd |
|- ( ( ph /\ ( M e. ZZ /\ 1 <_ M /\ M <_ N ) ) -> S. ( 0 [,] 1 ) ( ( x ^ ( M - 1 ) ) x. ( ( 1 - x ) ^ ( N - M ) ) ) _d x = ( 1 / ( M x. ( N _C M ) ) ) ) |
76 |
8 75
|
mpdan |
|- ( ph -> S. ( 0 [,] 1 ) ( ( x ^ ( M - 1 ) ) x. ( ( 1 - x ) ^ ( N - M ) ) ) _d x = ( 1 / ( M x. ( N _C M ) ) ) ) |
77 |
1 76
|
syl5eq |
|- ( ph -> F = ( 1 / ( M x. ( N _C M ) ) ) ) |