| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lcmineqlem10.1 |
|- ( ph -> M e. NN ) |
| 2 |
|
lcmineqlem10.2 |
|- ( ph -> N e. NN ) |
| 3 |
|
lcmineqlem10.3 |
|- ( ph -> M < N ) |
| 4 |
2
|
nncnd |
|- ( ph -> N e. CC ) |
| 5 |
1
|
nncnd |
|- ( ph -> M e. CC ) |
| 6 |
4 5
|
subcld |
|- ( ph -> ( N - M ) e. CC ) |
| 7 |
|
elunitcn |
|- ( x e. ( 0 [,] 1 ) -> x e. CC ) |
| 8 |
1
|
nnnn0d |
|- ( ph -> M e. NN0 ) |
| 9 |
|
expcl |
|- ( ( x e. CC /\ M e. NN0 ) -> ( x ^ M ) e. CC ) |
| 10 |
8 9
|
sylan2 |
|- ( ( x e. CC /\ ph ) -> ( x ^ M ) e. CC ) |
| 11 |
10
|
ancoms |
|- ( ( ph /\ x e. CC ) -> ( x ^ M ) e. CC ) |
| 12 |
7 11
|
sylan2 |
|- ( ( ph /\ x e. ( 0 [,] 1 ) ) -> ( x ^ M ) e. CC ) |
| 13 |
|
1cnd |
|- ( ( ph /\ x e. CC ) -> 1 e. CC ) |
| 14 |
|
simpr |
|- ( ( ph /\ x e. CC ) -> x e. CC ) |
| 15 |
13 14
|
subcld |
|- ( ( ph /\ x e. CC ) -> ( 1 - x ) e. CC ) |
| 16 |
1
|
nnzd |
|- ( ph -> M e. ZZ ) |
| 17 |
2
|
nnzd |
|- ( ph -> N e. ZZ ) |
| 18 |
|
znnsub |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M < N <-> ( N - M ) e. NN ) ) |
| 19 |
16 17 18
|
syl2anc |
|- ( ph -> ( M < N <-> ( N - M ) e. NN ) ) |
| 20 |
3 19
|
mpbid |
|- ( ph -> ( N - M ) e. NN ) |
| 21 |
|
nnm1nn0 |
|- ( ( N - M ) e. NN -> ( ( N - M ) - 1 ) e. NN0 ) |
| 22 |
20 21
|
syl |
|- ( ph -> ( ( N - M ) - 1 ) e. NN0 ) |
| 23 |
22
|
adantr |
|- ( ( ph /\ x e. CC ) -> ( ( N - M ) - 1 ) e. NN0 ) |
| 24 |
15 23
|
expcld |
|- ( ( ph /\ x e. CC ) -> ( ( 1 - x ) ^ ( ( N - M ) - 1 ) ) e. CC ) |
| 25 |
7 24
|
sylan2 |
|- ( ( ph /\ x e. ( 0 [,] 1 ) ) -> ( ( 1 - x ) ^ ( ( N - M ) - 1 ) ) e. CC ) |
| 26 |
12 25
|
mulcld |
|- ( ( ph /\ x e. ( 0 [,] 1 ) ) -> ( ( x ^ M ) x. ( ( 1 - x ) ^ ( ( N - M ) - 1 ) ) ) e. CC ) |
| 27 |
|
0red |
|- ( ph -> 0 e. RR ) |
| 28 |
|
1red |
|- ( ph -> 1 e. RR ) |
| 29 |
|
expcncf |
|- ( M e. NN0 -> ( x e. CC |-> ( x ^ M ) ) e. ( CC -cn-> CC ) ) |
| 30 |
8 29
|
syl |
|- ( ph -> ( x e. CC |-> ( x ^ M ) ) e. ( CC -cn-> CC ) ) |
| 31 |
|
1nn |
|- 1 e. NN |
| 32 |
31
|
a1i |
|- ( ph -> 1 e. NN ) |
| 33 |
20
|
nnge1d |
|- ( ph -> 1 <_ ( N - M ) ) |
| 34 |
32 20 33
|
lcmineqlem9 |
|- ( ph -> ( x e. CC |-> ( ( 1 - x ) ^ ( ( N - M ) - 1 ) ) ) e. ( CC -cn-> CC ) ) |
| 35 |
30 34
|
mulcncf |
|- ( ph -> ( x e. CC |-> ( ( x ^ M ) x. ( ( 1 - x ) ^ ( ( N - M ) - 1 ) ) ) ) e. ( CC -cn-> CC ) ) |
| 36 |
35
|
resclunitintvd |
|- ( ph -> ( x e. ( 0 [,] 1 ) |-> ( ( x ^ M ) x. ( ( 1 - x ) ^ ( ( N - M ) - 1 ) ) ) ) e. ( ( 0 [,] 1 ) -cn-> CC ) ) |
| 37 |
|
cnicciblnc |
|- ( ( 0 e. RR /\ 1 e. RR /\ ( x e. ( 0 [,] 1 ) |-> ( ( x ^ M ) x. ( ( 1 - x ) ^ ( ( N - M ) - 1 ) ) ) ) e. ( ( 0 [,] 1 ) -cn-> CC ) ) -> ( x e. ( 0 [,] 1 ) |-> ( ( x ^ M ) x. ( ( 1 - x ) ^ ( ( N - M ) - 1 ) ) ) ) e. L^1 ) |
| 38 |
27 28 36 37
|
syl3anc |
|- ( ph -> ( x e. ( 0 [,] 1 ) |-> ( ( x ^ M ) x. ( ( 1 - x ) ^ ( ( N - M ) - 1 ) ) ) ) e. L^1 ) |
| 39 |
26 38
|
itgcl |
|- ( ph -> S. ( 0 [,] 1 ) ( ( x ^ M ) x. ( ( 1 - x ) ^ ( ( N - M ) - 1 ) ) ) _d x e. CC ) |
| 40 |
6 39
|
mulneg1d |
|- ( ph -> ( -u ( N - M ) x. S. ( 0 [,] 1 ) ( ( x ^ M ) x. ( ( 1 - x ) ^ ( ( N - M ) - 1 ) ) ) _d x ) = -u ( ( N - M ) x. S. ( 0 [,] 1 ) ( ( x ^ M ) x. ( ( 1 - x ) ^ ( ( N - M ) - 1 ) ) ) _d x ) ) |
| 41 |
6
|
negcld |
|- ( ph -> -u ( N - M ) e. CC ) |
| 42 |
41 26 38
|
itgmulc2 |
|- ( ph -> ( -u ( N - M ) x. S. ( 0 [,] 1 ) ( ( x ^ M ) x. ( ( 1 - x ) ^ ( ( N - M ) - 1 ) ) ) _d x ) = S. ( 0 [,] 1 ) ( -u ( N - M ) x. ( ( x ^ M ) x. ( ( 1 - x ) ^ ( ( N - M ) - 1 ) ) ) ) _d x ) |
| 43 |
4
|
adantr |
|- ( ( ph /\ x e. CC ) -> N e. CC ) |
| 44 |
5
|
adantr |
|- ( ( ph /\ x e. CC ) -> M e. CC ) |
| 45 |
43 44
|
subcld |
|- ( ( ph /\ x e. CC ) -> ( N - M ) e. CC ) |
| 46 |
45
|
negcld |
|- ( ( ph /\ x e. CC ) -> -u ( N - M ) e. CC ) |
| 47 |
11 46 24
|
mul12d |
|- ( ( ph /\ x e. CC ) -> ( ( x ^ M ) x. ( -u ( N - M ) x. ( ( 1 - x ) ^ ( ( N - M ) - 1 ) ) ) ) = ( -u ( N - M ) x. ( ( x ^ M ) x. ( ( 1 - x ) ^ ( ( N - M ) - 1 ) ) ) ) ) |
| 48 |
7 47
|
sylan2 |
|- ( ( ph /\ x e. ( 0 [,] 1 ) ) -> ( ( x ^ M ) x. ( -u ( N - M ) x. ( ( 1 - x ) ^ ( ( N - M ) - 1 ) ) ) ) = ( -u ( N - M ) x. ( ( x ^ M ) x. ( ( 1 - x ) ^ ( ( N - M ) - 1 ) ) ) ) ) |
| 49 |
48
|
itgeq2dv |
|- ( ph -> S. ( 0 [,] 1 ) ( ( x ^ M ) x. ( -u ( N - M ) x. ( ( 1 - x ) ^ ( ( N - M ) - 1 ) ) ) ) _d x = S. ( 0 [,] 1 ) ( -u ( N - M ) x. ( ( x ^ M ) x. ( ( 1 - x ) ^ ( ( N - M ) - 1 ) ) ) ) _d x ) |
| 50 |
4
|
adantr |
|- ( ( ph /\ x e. ( 0 [,] 1 ) ) -> N e. CC ) |
| 51 |
5
|
adantr |
|- ( ( ph /\ x e. ( 0 [,] 1 ) ) -> M e. CC ) |
| 52 |
50 51
|
subcld |
|- ( ( ph /\ x e. ( 0 [,] 1 ) ) -> ( N - M ) e. CC ) |
| 53 |
52
|
negcld |
|- ( ( ph /\ x e. ( 0 [,] 1 ) ) -> -u ( N - M ) e. CC ) |
| 54 |
53 25
|
mulcld |
|- ( ( ph /\ x e. ( 0 [,] 1 ) ) -> ( -u ( N - M ) x. ( ( 1 - x ) ^ ( ( N - M ) - 1 ) ) ) e. CC ) |
| 55 |
12 54
|
mulcld |
|- ( ( ph /\ x e. ( 0 [,] 1 ) ) -> ( ( x ^ M ) x. ( -u ( N - M ) x. ( ( 1 - x ) ^ ( ( N - M ) - 1 ) ) ) ) e. CC ) |
| 56 |
27 28 55
|
itgioo |
|- ( ph -> S. ( 0 (,) 1 ) ( ( x ^ M ) x. ( -u ( N - M ) x. ( ( 1 - x ) ^ ( ( N - M ) - 1 ) ) ) ) _d x = S. ( 0 [,] 1 ) ( ( x ^ M ) x. ( -u ( N - M ) x. ( ( 1 - x ) ^ ( ( N - M ) - 1 ) ) ) ) _d x ) |
| 57 |
|
0le1 |
|- 0 <_ 1 |
| 58 |
57
|
a1i |
|- ( ph -> 0 <_ 1 ) |
| 59 |
30
|
resclunitintvd |
|- ( ph -> ( x e. ( 0 [,] 1 ) |-> ( x ^ M ) ) e. ( ( 0 [,] 1 ) -cn-> CC ) ) |
| 60 |
1
|
nnred |
|- ( ph -> M e. RR ) |
| 61 |
2
|
nnred |
|- ( ph -> N e. RR ) |
| 62 |
|
ltle |
|- ( ( M e. RR /\ N e. RR ) -> ( M < N -> M <_ N ) ) |
| 63 |
60 61 62
|
syl2anc |
|- ( ph -> ( M < N -> M <_ N ) ) |
| 64 |
3 63
|
mpd |
|- ( ph -> M <_ N ) |
| 65 |
1 2 64
|
lcmineqlem9 |
|- ( ph -> ( x e. CC |-> ( ( 1 - x ) ^ ( N - M ) ) ) e. ( CC -cn-> CC ) ) |
| 66 |
65
|
resclunitintvd |
|- ( ph -> ( x e. ( 0 [,] 1 ) |-> ( ( 1 - x ) ^ ( N - M ) ) ) e. ( ( 0 [,] 1 ) -cn-> CC ) ) |
| 67 |
|
ssid |
|- CC C_ CC |
| 68 |
|
cncfmptc |
|- ( ( M e. CC /\ CC C_ CC /\ CC C_ CC ) -> ( x e. CC |-> M ) e. ( CC -cn-> CC ) ) |
| 69 |
67 67 68
|
mp3an23 |
|- ( M e. CC -> ( x e. CC |-> M ) e. ( CC -cn-> CC ) ) |
| 70 |
5 69
|
syl |
|- ( ph -> ( x e. CC |-> M ) e. ( CC -cn-> CC ) ) |
| 71 |
70
|
resopunitintvd |
|- ( ph -> ( x e. ( 0 (,) 1 ) |-> M ) e. ( ( 0 (,) 1 ) -cn-> CC ) ) |
| 72 |
|
nnm1nn0 |
|- ( M e. NN -> ( M - 1 ) e. NN0 ) |
| 73 |
|
expcncf |
|- ( ( M - 1 ) e. NN0 -> ( x e. CC |-> ( x ^ ( M - 1 ) ) ) e. ( CC -cn-> CC ) ) |
| 74 |
1 72 73
|
3syl |
|- ( ph -> ( x e. CC |-> ( x ^ ( M - 1 ) ) ) e. ( CC -cn-> CC ) ) |
| 75 |
74
|
resopunitintvd |
|- ( ph -> ( x e. ( 0 (,) 1 ) |-> ( x ^ ( M - 1 ) ) ) e. ( ( 0 (,) 1 ) -cn-> CC ) ) |
| 76 |
71 75
|
mulcncf |
|- ( ph -> ( x e. ( 0 (,) 1 ) |-> ( M x. ( x ^ ( M - 1 ) ) ) ) e. ( ( 0 (,) 1 ) -cn-> CC ) ) |
| 77 |
|
cncfmptc |
|- ( ( -u ( N - M ) e. CC /\ CC C_ CC /\ CC C_ CC ) -> ( x e. CC |-> -u ( N - M ) ) e. ( CC -cn-> CC ) ) |
| 78 |
67 67 77
|
mp3an23 |
|- ( -u ( N - M ) e. CC -> ( x e. CC |-> -u ( N - M ) ) e. ( CC -cn-> CC ) ) |
| 79 |
41 78
|
syl |
|- ( ph -> ( x e. CC |-> -u ( N - M ) ) e. ( CC -cn-> CC ) ) |
| 80 |
79
|
resopunitintvd |
|- ( ph -> ( x e. ( 0 (,) 1 ) |-> -u ( N - M ) ) e. ( ( 0 (,) 1 ) -cn-> CC ) ) |
| 81 |
34
|
resopunitintvd |
|- ( ph -> ( x e. ( 0 (,) 1 ) |-> ( ( 1 - x ) ^ ( ( N - M ) - 1 ) ) ) e. ( ( 0 (,) 1 ) -cn-> CC ) ) |
| 82 |
80 81
|
mulcncf |
|- ( ph -> ( x e. ( 0 (,) 1 ) |-> ( -u ( N - M ) x. ( ( 1 - x ) ^ ( ( N - M ) - 1 ) ) ) ) e. ( ( 0 (,) 1 ) -cn-> CC ) ) |
| 83 |
|
ioossicc |
|- ( 0 (,) 1 ) C_ ( 0 [,] 1 ) |
| 84 |
83
|
a1i |
|- ( ph -> ( 0 (,) 1 ) C_ ( 0 [,] 1 ) ) |
| 85 |
|
ioombl |
|- ( 0 (,) 1 ) e. dom vol |
| 86 |
85
|
a1i |
|- ( ph -> ( 0 (,) 1 ) e. dom vol ) |
| 87 |
79 34
|
mulcncf |
|- ( ph -> ( x e. CC |-> ( -u ( N - M ) x. ( ( 1 - x ) ^ ( ( N - M ) - 1 ) ) ) ) e. ( CC -cn-> CC ) ) |
| 88 |
30 87
|
mulcncf |
|- ( ph -> ( x e. CC |-> ( ( x ^ M ) x. ( -u ( N - M ) x. ( ( 1 - x ) ^ ( ( N - M ) - 1 ) ) ) ) ) e. ( CC -cn-> CC ) ) |
| 89 |
88
|
resclunitintvd |
|- ( ph -> ( x e. ( 0 [,] 1 ) |-> ( ( x ^ M ) x. ( -u ( N - M ) x. ( ( 1 - x ) ^ ( ( N - M ) - 1 ) ) ) ) ) e. ( ( 0 [,] 1 ) -cn-> CC ) ) |
| 90 |
|
cnicciblnc |
|- ( ( 0 e. RR /\ 1 e. RR /\ ( x e. ( 0 [,] 1 ) |-> ( ( x ^ M ) x. ( -u ( N - M ) x. ( ( 1 - x ) ^ ( ( N - M ) - 1 ) ) ) ) ) e. ( ( 0 [,] 1 ) -cn-> CC ) ) -> ( x e. ( 0 [,] 1 ) |-> ( ( x ^ M ) x. ( -u ( N - M ) x. ( ( 1 - x ) ^ ( ( N - M ) - 1 ) ) ) ) ) e. L^1 ) |
| 91 |
27 28 89 90
|
syl3anc |
|- ( ph -> ( x e. ( 0 [,] 1 ) |-> ( ( x ^ M ) x. ( -u ( N - M ) x. ( ( 1 - x ) ^ ( ( N - M ) - 1 ) ) ) ) ) e. L^1 ) |
| 92 |
84 86 55 91
|
iblss |
|- ( ph -> ( x e. ( 0 (,) 1 ) |-> ( ( x ^ M ) x. ( -u ( N - M ) x. ( ( 1 - x ) ^ ( ( N - M ) - 1 ) ) ) ) ) e. L^1 ) |
| 93 |
1 72
|
syl |
|- ( ph -> ( M - 1 ) e. NN0 ) |
| 94 |
|
expcl |
|- ( ( x e. CC /\ ( M - 1 ) e. NN0 ) -> ( x ^ ( M - 1 ) ) e. CC ) |
| 95 |
93 94
|
sylan2 |
|- ( ( x e. CC /\ ph ) -> ( x ^ ( M - 1 ) ) e. CC ) |
| 96 |
95
|
ancoms |
|- ( ( ph /\ x e. CC ) -> ( x ^ ( M - 1 ) ) e. CC ) |
| 97 |
7 96
|
sylan2 |
|- ( ( ph /\ x e. ( 0 [,] 1 ) ) -> ( x ^ ( M - 1 ) ) e. CC ) |
| 98 |
51 97
|
mulcld |
|- ( ( ph /\ x e. ( 0 [,] 1 ) ) -> ( M x. ( x ^ ( M - 1 ) ) ) e. CC ) |
| 99 |
20
|
nnnn0d |
|- ( ph -> ( N - M ) e. NN0 ) |
| 100 |
99
|
adantr |
|- ( ( ph /\ x e. CC ) -> ( N - M ) e. NN0 ) |
| 101 |
15 100
|
expcld |
|- ( ( ph /\ x e. CC ) -> ( ( 1 - x ) ^ ( N - M ) ) e. CC ) |
| 102 |
7 101
|
sylan2 |
|- ( ( ph /\ x e. ( 0 [,] 1 ) ) -> ( ( 1 - x ) ^ ( N - M ) ) e. CC ) |
| 103 |
98 102
|
mulcld |
|- ( ( ph /\ x e. ( 0 [,] 1 ) ) -> ( ( M x. ( x ^ ( M - 1 ) ) ) x. ( ( 1 - x ) ^ ( N - M ) ) ) e. CC ) |
| 104 |
70 74
|
mulcncf |
|- ( ph -> ( x e. CC |-> ( M x. ( x ^ ( M - 1 ) ) ) ) e. ( CC -cn-> CC ) ) |
| 105 |
104 65
|
mulcncf |
|- ( ph -> ( x e. CC |-> ( ( M x. ( x ^ ( M - 1 ) ) ) x. ( ( 1 - x ) ^ ( N - M ) ) ) ) e. ( CC -cn-> CC ) ) |
| 106 |
105
|
resclunitintvd |
|- ( ph -> ( x e. ( 0 [,] 1 ) |-> ( ( M x. ( x ^ ( M - 1 ) ) ) x. ( ( 1 - x ) ^ ( N - M ) ) ) ) e. ( ( 0 [,] 1 ) -cn-> CC ) ) |
| 107 |
|
cnicciblnc |
|- ( ( 0 e. RR /\ 1 e. RR /\ ( x e. ( 0 [,] 1 ) |-> ( ( M x. ( x ^ ( M - 1 ) ) ) x. ( ( 1 - x ) ^ ( N - M ) ) ) ) e. ( ( 0 [,] 1 ) -cn-> CC ) ) -> ( x e. ( 0 [,] 1 ) |-> ( ( M x. ( x ^ ( M - 1 ) ) ) x. ( ( 1 - x ) ^ ( N - M ) ) ) ) e. L^1 ) |
| 108 |
27 28 106 107
|
syl3anc |
|- ( ph -> ( x e. ( 0 [,] 1 ) |-> ( ( M x. ( x ^ ( M - 1 ) ) ) x. ( ( 1 - x ) ^ ( N - M ) ) ) ) e. L^1 ) |
| 109 |
84 86 103 108
|
iblss |
|- ( ph -> ( x e. ( 0 (,) 1 ) |-> ( ( M x. ( x ^ ( M - 1 ) ) ) x. ( ( 1 - x ) ^ ( N - M ) ) ) ) e. L^1 ) |
| 110 |
|
dvexp |
|- ( M e. NN -> ( CC _D ( x e. CC |-> ( x ^ M ) ) ) = ( x e. CC |-> ( M x. ( x ^ ( M - 1 ) ) ) ) ) |
| 111 |
1 110
|
syl |
|- ( ph -> ( CC _D ( x e. CC |-> ( x ^ M ) ) ) = ( x e. CC |-> ( M x. ( x ^ ( M - 1 ) ) ) ) ) |
| 112 |
44 96
|
mulcld |
|- ( ( ph /\ x e. CC ) -> ( M x. ( x ^ ( M - 1 ) ) ) e. CC ) |
| 113 |
111 11 112
|
resdvopclptsd |
|- ( ph -> ( RR _D ( x e. ( 0 [,] 1 ) |-> ( x ^ M ) ) ) = ( x e. ( 0 (,) 1 ) |-> ( M x. ( x ^ ( M - 1 ) ) ) ) ) |
| 114 |
1 2 3
|
lcmineqlem8 |
|- ( ph -> ( CC _D ( x e. CC |-> ( ( 1 - x ) ^ ( N - M ) ) ) ) = ( x e. CC |-> ( -u ( N - M ) x. ( ( 1 - x ) ^ ( ( N - M ) - 1 ) ) ) ) ) |
| 115 |
46 24
|
mulcld |
|- ( ( ph /\ x e. CC ) -> ( -u ( N - M ) x. ( ( 1 - x ) ^ ( ( N - M ) - 1 ) ) ) e. CC ) |
| 116 |
114 101 115
|
resdvopclptsd |
|- ( ph -> ( RR _D ( x e. ( 0 [,] 1 ) |-> ( ( 1 - x ) ^ ( N - M ) ) ) ) = ( x e. ( 0 (,) 1 ) |-> ( -u ( N - M ) x. ( ( 1 - x ) ^ ( ( N - M ) - 1 ) ) ) ) ) |
| 117 |
|
oveq1 |
|- ( x = 0 -> ( x ^ M ) = ( 0 ^ M ) ) |
| 118 |
117
|
adantl |
|- ( ( ph /\ x = 0 ) -> ( x ^ M ) = ( 0 ^ M ) ) |
| 119 |
1
|
0expd |
|- ( ph -> ( 0 ^ M ) = 0 ) |
| 120 |
119
|
adantr |
|- ( ( ph /\ x = 0 ) -> ( 0 ^ M ) = 0 ) |
| 121 |
118 120
|
eqtrd |
|- ( ( ph /\ x = 0 ) -> ( x ^ M ) = 0 ) |
| 122 |
121
|
oveq1d |
|- ( ( ph /\ x = 0 ) -> ( ( x ^ M ) x. ( ( 1 - x ) ^ ( N - M ) ) ) = ( 0 x. ( ( 1 - x ) ^ ( N - M ) ) ) ) |
| 123 |
|
0cn |
|- 0 e. CC |
| 124 |
|
eleq1 |
|- ( x = 0 -> ( x e. CC <-> 0 e. CC ) ) |
| 125 |
123 124
|
mpbiri |
|- ( x = 0 -> x e. CC ) |
| 126 |
101
|
mul02d |
|- ( ( ph /\ x e. CC ) -> ( 0 x. ( ( 1 - x ) ^ ( N - M ) ) ) = 0 ) |
| 127 |
125 126
|
sylan2 |
|- ( ( ph /\ x = 0 ) -> ( 0 x. ( ( 1 - x ) ^ ( N - M ) ) ) = 0 ) |
| 128 |
122 127
|
eqtrd |
|- ( ( ph /\ x = 0 ) -> ( ( x ^ M ) x. ( ( 1 - x ) ^ ( N - M ) ) ) = 0 ) |
| 129 |
|
oveq2 |
|- ( x = 1 -> ( 1 - x ) = ( 1 - 1 ) ) |
| 130 |
|
1m1e0 |
|- ( 1 - 1 ) = 0 |
| 131 |
129 130
|
eqtrdi |
|- ( x = 1 -> ( 1 - x ) = 0 ) |
| 132 |
131
|
oveq1d |
|- ( x = 1 -> ( ( 1 - x ) ^ ( N - M ) ) = ( 0 ^ ( N - M ) ) ) |
| 133 |
132
|
adantl |
|- ( ( ph /\ x = 1 ) -> ( ( 1 - x ) ^ ( N - M ) ) = ( 0 ^ ( N - M ) ) ) |
| 134 |
20
|
0expd |
|- ( ph -> ( 0 ^ ( N - M ) ) = 0 ) |
| 135 |
134
|
adantr |
|- ( ( ph /\ x = 1 ) -> ( 0 ^ ( N - M ) ) = 0 ) |
| 136 |
133 135
|
eqtrd |
|- ( ( ph /\ x = 1 ) -> ( ( 1 - x ) ^ ( N - M ) ) = 0 ) |
| 137 |
136
|
oveq2d |
|- ( ( ph /\ x = 1 ) -> ( ( x ^ M ) x. ( ( 1 - x ) ^ ( N - M ) ) ) = ( ( x ^ M ) x. 0 ) ) |
| 138 |
|
ax-1cn |
|- 1 e. CC |
| 139 |
|
eleq1 |
|- ( x = 1 -> ( x e. CC <-> 1 e. CC ) ) |
| 140 |
138 139
|
mpbiri |
|- ( x = 1 -> x e. CC ) |
| 141 |
11
|
mul01d |
|- ( ( ph /\ x e. CC ) -> ( ( x ^ M ) x. 0 ) = 0 ) |
| 142 |
140 141
|
sylan2 |
|- ( ( ph /\ x = 1 ) -> ( ( x ^ M ) x. 0 ) = 0 ) |
| 143 |
137 142
|
eqtrd |
|- ( ( ph /\ x = 1 ) -> ( ( x ^ M ) x. ( ( 1 - x ) ^ ( N - M ) ) ) = 0 ) |
| 144 |
27 28 58 59 66 76 82 92 109 113 116 128 143
|
itgparts |
|- ( ph -> S. ( 0 (,) 1 ) ( ( x ^ M ) x. ( -u ( N - M ) x. ( ( 1 - x ) ^ ( ( N - M ) - 1 ) ) ) ) _d x = ( ( 0 - 0 ) - S. ( 0 (,) 1 ) ( ( M x. ( x ^ ( M - 1 ) ) ) x. ( ( 1 - x ) ^ ( N - M ) ) ) _d x ) ) |
| 145 |
56 144
|
eqtr3d |
|- ( ph -> S. ( 0 [,] 1 ) ( ( x ^ M ) x. ( -u ( N - M ) x. ( ( 1 - x ) ^ ( ( N - M ) - 1 ) ) ) ) _d x = ( ( 0 - 0 ) - S. ( 0 (,) 1 ) ( ( M x. ( x ^ ( M - 1 ) ) ) x. ( ( 1 - x ) ^ ( N - M ) ) ) _d x ) ) |
| 146 |
27 28 103
|
itgioo |
|- ( ph -> S. ( 0 (,) 1 ) ( ( M x. ( x ^ ( M - 1 ) ) ) x. ( ( 1 - x ) ^ ( N - M ) ) ) _d x = S. ( 0 [,] 1 ) ( ( M x. ( x ^ ( M - 1 ) ) ) x. ( ( 1 - x ) ^ ( N - M ) ) ) _d x ) |
| 147 |
146
|
oveq2d |
|- ( ph -> ( ( 0 - 0 ) - S. ( 0 (,) 1 ) ( ( M x. ( x ^ ( M - 1 ) ) ) x. ( ( 1 - x ) ^ ( N - M ) ) ) _d x ) = ( ( 0 - 0 ) - S. ( 0 [,] 1 ) ( ( M x. ( x ^ ( M - 1 ) ) ) x. ( ( 1 - x ) ^ ( N - M ) ) ) _d x ) ) |
| 148 |
145 147
|
eqtrd |
|- ( ph -> S. ( 0 [,] 1 ) ( ( x ^ M ) x. ( -u ( N - M ) x. ( ( 1 - x ) ^ ( ( N - M ) - 1 ) ) ) ) _d x = ( ( 0 - 0 ) - S. ( 0 [,] 1 ) ( ( M x. ( x ^ ( M - 1 ) ) ) x. ( ( 1 - x ) ^ ( N - M ) ) ) _d x ) ) |
| 149 |
|
0m0e0 |
|- ( 0 - 0 ) = 0 |
| 150 |
149
|
oveq1i |
|- ( ( 0 - 0 ) - S. ( 0 [,] 1 ) ( ( M x. ( x ^ ( M - 1 ) ) ) x. ( ( 1 - x ) ^ ( N - M ) ) ) _d x ) = ( 0 - S. ( 0 [,] 1 ) ( ( M x. ( x ^ ( M - 1 ) ) ) x. ( ( 1 - x ) ^ ( N - M ) ) ) _d x ) |
| 151 |
148 150
|
eqtrdi |
|- ( ph -> S. ( 0 [,] 1 ) ( ( x ^ M ) x. ( -u ( N - M ) x. ( ( 1 - x ) ^ ( ( N - M ) - 1 ) ) ) ) _d x = ( 0 - S. ( 0 [,] 1 ) ( ( M x. ( x ^ ( M - 1 ) ) ) x. ( ( 1 - x ) ^ ( N - M ) ) ) _d x ) ) |
| 152 |
49 151
|
eqtr3d |
|- ( ph -> S. ( 0 [,] 1 ) ( -u ( N - M ) x. ( ( x ^ M ) x. ( ( 1 - x ) ^ ( ( N - M ) - 1 ) ) ) ) _d x = ( 0 - S. ( 0 [,] 1 ) ( ( M x. ( x ^ ( M - 1 ) ) ) x. ( ( 1 - x ) ^ ( N - M ) ) ) _d x ) ) |
| 153 |
42 152
|
eqtrd |
|- ( ph -> ( -u ( N - M ) x. S. ( 0 [,] 1 ) ( ( x ^ M ) x. ( ( 1 - x ) ^ ( ( N - M ) - 1 ) ) ) _d x ) = ( 0 - S. ( 0 [,] 1 ) ( ( M x. ( x ^ ( M - 1 ) ) ) x. ( ( 1 - x ) ^ ( N - M ) ) ) _d x ) ) |
| 154 |
44 96 101
|
mulassd |
|- ( ( ph /\ x e. CC ) -> ( ( M x. ( x ^ ( M - 1 ) ) ) x. ( ( 1 - x ) ^ ( N - M ) ) ) = ( M x. ( ( x ^ ( M - 1 ) ) x. ( ( 1 - x ) ^ ( N - M ) ) ) ) ) |
| 155 |
7 154
|
sylan2 |
|- ( ( ph /\ x e. ( 0 [,] 1 ) ) -> ( ( M x. ( x ^ ( M - 1 ) ) ) x. ( ( 1 - x ) ^ ( N - M ) ) ) = ( M x. ( ( x ^ ( M - 1 ) ) x. ( ( 1 - x ) ^ ( N - M ) ) ) ) ) |
| 156 |
155
|
itgeq2dv |
|- ( ph -> S. ( 0 [,] 1 ) ( ( M x. ( x ^ ( M - 1 ) ) ) x. ( ( 1 - x ) ^ ( N - M ) ) ) _d x = S. ( 0 [,] 1 ) ( M x. ( ( x ^ ( M - 1 ) ) x. ( ( 1 - x ) ^ ( N - M ) ) ) ) _d x ) |
| 157 |
156
|
oveq2d |
|- ( ph -> ( 0 - S. ( 0 [,] 1 ) ( ( M x. ( x ^ ( M - 1 ) ) ) x. ( ( 1 - x ) ^ ( N - M ) ) ) _d x ) = ( 0 - S. ( 0 [,] 1 ) ( M x. ( ( x ^ ( M - 1 ) ) x. ( ( 1 - x ) ^ ( N - M ) ) ) ) _d x ) ) |
| 158 |
153 157
|
eqtrd |
|- ( ph -> ( -u ( N - M ) x. S. ( 0 [,] 1 ) ( ( x ^ M ) x. ( ( 1 - x ) ^ ( ( N - M ) - 1 ) ) ) _d x ) = ( 0 - S. ( 0 [,] 1 ) ( M x. ( ( x ^ ( M - 1 ) ) x. ( ( 1 - x ) ^ ( N - M ) ) ) ) _d x ) ) |
| 159 |
97 102
|
mulcld |
|- ( ( ph /\ x e. ( 0 [,] 1 ) ) -> ( ( x ^ ( M - 1 ) ) x. ( ( 1 - x ) ^ ( N - M ) ) ) e. CC ) |
| 160 |
74 65
|
mulcncf |
|- ( ph -> ( x e. CC |-> ( ( x ^ ( M - 1 ) ) x. ( ( 1 - x ) ^ ( N - M ) ) ) ) e. ( CC -cn-> CC ) ) |
| 161 |
160
|
resclunitintvd |
|- ( ph -> ( x e. ( 0 [,] 1 ) |-> ( ( x ^ ( M - 1 ) ) x. ( ( 1 - x ) ^ ( N - M ) ) ) ) e. ( ( 0 [,] 1 ) -cn-> CC ) ) |
| 162 |
|
cnicciblnc |
|- ( ( 0 e. RR /\ 1 e. RR /\ ( x e. ( 0 [,] 1 ) |-> ( ( x ^ ( M - 1 ) ) x. ( ( 1 - x ) ^ ( N - M ) ) ) ) e. ( ( 0 [,] 1 ) -cn-> CC ) ) -> ( x e. ( 0 [,] 1 ) |-> ( ( x ^ ( M - 1 ) ) x. ( ( 1 - x ) ^ ( N - M ) ) ) ) e. L^1 ) |
| 163 |
27 28 161 162
|
syl3anc |
|- ( ph -> ( x e. ( 0 [,] 1 ) |-> ( ( x ^ ( M - 1 ) ) x. ( ( 1 - x ) ^ ( N - M ) ) ) ) e. L^1 ) |
| 164 |
5 159 163
|
itgmulc2 |
|- ( ph -> ( M x. S. ( 0 [,] 1 ) ( ( x ^ ( M - 1 ) ) x. ( ( 1 - x ) ^ ( N - M ) ) ) _d x ) = S. ( 0 [,] 1 ) ( M x. ( ( x ^ ( M - 1 ) ) x. ( ( 1 - x ) ^ ( N - M ) ) ) ) _d x ) |
| 165 |
164
|
oveq2d |
|- ( ph -> ( 0 - ( M x. S. ( 0 [,] 1 ) ( ( x ^ ( M - 1 ) ) x. ( ( 1 - x ) ^ ( N - M ) ) ) _d x ) ) = ( 0 - S. ( 0 [,] 1 ) ( M x. ( ( x ^ ( M - 1 ) ) x. ( ( 1 - x ) ^ ( N - M ) ) ) ) _d x ) ) |
| 166 |
158 165
|
eqtr4d |
|- ( ph -> ( -u ( N - M ) x. S. ( 0 [,] 1 ) ( ( x ^ M ) x. ( ( 1 - x ) ^ ( ( N - M ) - 1 ) ) ) _d x ) = ( 0 - ( M x. S. ( 0 [,] 1 ) ( ( x ^ ( M - 1 ) ) x. ( ( 1 - x ) ^ ( N - M ) ) ) _d x ) ) ) |
| 167 |
|
df-neg |
|- -u ( M x. S. ( 0 [,] 1 ) ( ( x ^ ( M - 1 ) ) x. ( ( 1 - x ) ^ ( N - M ) ) ) _d x ) = ( 0 - ( M x. S. ( 0 [,] 1 ) ( ( x ^ ( M - 1 ) ) x. ( ( 1 - x ) ^ ( N - M ) ) ) _d x ) ) |
| 168 |
166 167
|
eqtr4di |
|- ( ph -> ( -u ( N - M ) x. S. ( 0 [,] 1 ) ( ( x ^ M ) x. ( ( 1 - x ) ^ ( ( N - M ) - 1 ) ) ) _d x ) = -u ( M x. S. ( 0 [,] 1 ) ( ( x ^ ( M - 1 ) ) x. ( ( 1 - x ) ^ ( N - M ) ) ) _d x ) ) |
| 169 |
40 168
|
eqtr3d |
|- ( ph -> -u ( ( N - M ) x. S. ( 0 [,] 1 ) ( ( x ^ M ) x. ( ( 1 - x ) ^ ( ( N - M ) - 1 ) ) ) _d x ) = -u ( M x. S. ( 0 [,] 1 ) ( ( x ^ ( M - 1 ) ) x. ( ( 1 - x ) ^ ( N - M ) ) ) _d x ) ) |
| 170 |
6 39
|
mulcld |
|- ( ph -> ( ( N - M ) x. S. ( 0 [,] 1 ) ( ( x ^ M ) x. ( ( 1 - x ) ^ ( ( N - M ) - 1 ) ) ) _d x ) e. CC ) |
| 171 |
159 163
|
itgcl |
|- ( ph -> S. ( 0 [,] 1 ) ( ( x ^ ( M - 1 ) ) x. ( ( 1 - x ) ^ ( N - M ) ) ) _d x e. CC ) |
| 172 |
5 171
|
mulcld |
|- ( ph -> ( M x. S. ( 0 [,] 1 ) ( ( x ^ ( M - 1 ) ) x. ( ( 1 - x ) ^ ( N - M ) ) ) _d x ) e. CC ) |
| 173 |
170 172
|
neg11ad |
|- ( ph -> ( -u ( ( N - M ) x. S. ( 0 [,] 1 ) ( ( x ^ M ) x. ( ( 1 - x ) ^ ( ( N - M ) - 1 ) ) ) _d x ) = -u ( M x. S. ( 0 [,] 1 ) ( ( x ^ ( M - 1 ) ) x. ( ( 1 - x ) ^ ( N - M ) ) ) _d x ) <-> ( ( N - M ) x. S. ( 0 [,] 1 ) ( ( x ^ M ) x. ( ( 1 - x ) ^ ( ( N - M ) - 1 ) ) ) _d x ) = ( M x. S. ( 0 [,] 1 ) ( ( x ^ ( M - 1 ) ) x. ( ( 1 - x ) ^ ( N - M ) ) ) _d x ) ) ) |
| 174 |
169 173
|
mpbid |
|- ( ph -> ( ( N - M ) x. S. ( 0 [,] 1 ) ( ( x ^ M ) x. ( ( 1 - x ) ^ ( ( N - M ) - 1 ) ) ) _d x ) = ( M x. S. ( 0 [,] 1 ) ( ( x ^ ( M - 1 ) ) x. ( ( 1 - x ) ^ ( N - M ) ) ) _d x ) ) |
| 175 |
20
|
nnne0d |
|- ( ph -> ( N - M ) =/= 0 ) |
| 176 |
172 6 39 175
|
divmuld |
|- ( ph -> ( ( ( M x. S. ( 0 [,] 1 ) ( ( x ^ ( M - 1 ) ) x. ( ( 1 - x ) ^ ( N - M ) ) ) _d x ) / ( N - M ) ) = S. ( 0 [,] 1 ) ( ( x ^ M ) x. ( ( 1 - x ) ^ ( ( N - M ) - 1 ) ) ) _d x <-> ( ( N - M ) x. S. ( 0 [,] 1 ) ( ( x ^ M ) x. ( ( 1 - x ) ^ ( ( N - M ) - 1 ) ) ) _d x ) = ( M x. S. ( 0 [,] 1 ) ( ( x ^ ( M - 1 ) ) x. ( ( 1 - x ) ^ ( N - M ) ) ) _d x ) ) ) |
| 177 |
174 176
|
mpbird |
|- ( ph -> ( ( M x. S. ( 0 [,] 1 ) ( ( x ^ ( M - 1 ) ) x. ( ( 1 - x ) ^ ( N - M ) ) ) _d x ) / ( N - M ) ) = S. ( 0 [,] 1 ) ( ( x ^ M ) x. ( ( 1 - x ) ^ ( ( N - M ) - 1 ) ) ) _d x ) |
| 178 |
138
|
a1i |
|- ( ph -> 1 e. CC ) |
| 179 |
5 178
|
pncand |
|- ( ph -> ( ( M + 1 ) - 1 ) = M ) |
| 180 |
179
|
eqcomd |
|- ( ph -> M = ( ( M + 1 ) - 1 ) ) |
| 181 |
180
|
oveq2d |
|- ( ph -> ( x ^ M ) = ( x ^ ( ( M + 1 ) - 1 ) ) ) |
| 182 |
4 5 178
|
subsub4d |
|- ( ph -> ( ( N - M ) - 1 ) = ( N - ( M + 1 ) ) ) |
| 183 |
182
|
oveq2d |
|- ( ph -> ( ( 1 - x ) ^ ( ( N - M ) - 1 ) ) = ( ( 1 - x ) ^ ( N - ( M + 1 ) ) ) ) |
| 184 |
181 183
|
oveq12d |
|- ( ph -> ( ( x ^ M ) x. ( ( 1 - x ) ^ ( ( N - M ) - 1 ) ) ) = ( ( x ^ ( ( M + 1 ) - 1 ) ) x. ( ( 1 - x ) ^ ( N - ( M + 1 ) ) ) ) ) |
| 185 |
184
|
adantr |
|- ( ( ph /\ x e. ( 0 [,] 1 ) ) -> ( ( x ^ M ) x. ( ( 1 - x ) ^ ( ( N - M ) - 1 ) ) ) = ( ( x ^ ( ( M + 1 ) - 1 ) ) x. ( ( 1 - x ) ^ ( N - ( M + 1 ) ) ) ) ) |
| 186 |
185
|
itgeq2dv |
|- ( ph -> S. ( 0 [,] 1 ) ( ( x ^ M ) x. ( ( 1 - x ) ^ ( ( N - M ) - 1 ) ) ) _d x = S. ( 0 [,] 1 ) ( ( x ^ ( ( M + 1 ) - 1 ) ) x. ( ( 1 - x ) ^ ( N - ( M + 1 ) ) ) ) _d x ) |
| 187 |
177 186
|
eqtrd |
|- ( ph -> ( ( M x. S. ( 0 [,] 1 ) ( ( x ^ ( M - 1 ) ) x. ( ( 1 - x ) ^ ( N - M ) ) ) _d x ) / ( N - M ) ) = S. ( 0 [,] 1 ) ( ( x ^ ( ( M + 1 ) - 1 ) ) x. ( ( 1 - x ) ^ ( N - ( M + 1 ) ) ) ) _d x ) |
| 188 |
187
|
eqcomd |
|- ( ph -> S. ( 0 [,] 1 ) ( ( x ^ ( ( M + 1 ) - 1 ) ) x. ( ( 1 - x ) ^ ( N - ( M + 1 ) ) ) ) _d x = ( ( M x. S. ( 0 [,] 1 ) ( ( x ^ ( M - 1 ) ) x. ( ( 1 - x ) ^ ( N - M ) ) ) _d x ) / ( N - M ) ) ) |
| 189 |
5 171 6 175
|
div23d |
|- ( ph -> ( ( M x. S. ( 0 [,] 1 ) ( ( x ^ ( M - 1 ) ) x. ( ( 1 - x ) ^ ( N - M ) ) ) _d x ) / ( N - M ) ) = ( ( M / ( N - M ) ) x. S. ( 0 [,] 1 ) ( ( x ^ ( M - 1 ) ) x. ( ( 1 - x ) ^ ( N - M ) ) ) _d x ) ) |
| 190 |
188 189
|
eqtrd |
|- ( ph -> S. ( 0 [,] 1 ) ( ( x ^ ( ( M + 1 ) - 1 ) ) x. ( ( 1 - x ) ^ ( N - ( M + 1 ) ) ) ) _d x = ( ( M / ( N - M ) ) x. S. ( 0 [,] 1 ) ( ( x ^ ( M - 1 ) ) x. ( ( 1 - x ) ^ ( N - M ) ) ) _d x ) ) |