Step |
Hyp |
Ref |
Expression |
1 |
|
lcmineqlem10.1 |
|- ( ph -> M e. NN ) |
2 |
|
lcmineqlem10.2 |
|- ( ph -> N e. NN ) |
3 |
|
lcmineqlem10.3 |
|- ( ph -> M < N ) |
4 |
2
|
nncnd |
|- ( ph -> N e. CC ) |
5 |
1
|
nncnd |
|- ( ph -> M e. CC ) |
6 |
4 5
|
subcld |
|- ( ph -> ( N - M ) e. CC ) |
7 |
|
elunitcn |
|- ( x e. ( 0 [,] 1 ) -> x e. CC ) |
8 |
1
|
nnnn0d |
|- ( ph -> M e. NN0 ) |
9 |
|
expcl |
|- ( ( x e. CC /\ M e. NN0 ) -> ( x ^ M ) e. CC ) |
10 |
8 9
|
sylan2 |
|- ( ( x e. CC /\ ph ) -> ( x ^ M ) e. CC ) |
11 |
10
|
ancoms |
|- ( ( ph /\ x e. CC ) -> ( x ^ M ) e. CC ) |
12 |
7 11
|
sylan2 |
|- ( ( ph /\ x e. ( 0 [,] 1 ) ) -> ( x ^ M ) e. CC ) |
13 |
|
1cnd |
|- ( ( ph /\ x e. CC ) -> 1 e. CC ) |
14 |
|
simpr |
|- ( ( ph /\ x e. CC ) -> x e. CC ) |
15 |
13 14
|
subcld |
|- ( ( ph /\ x e. CC ) -> ( 1 - x ) e. CC ) |
16 |
1
|
nnzd |
|- ( ph -> M e. ZZ ) |
17 |
2
|
nnzd |
|- ( ph -> N e. ZZ ) |
18 |
|
znnsub |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M < N <-> ( N - M ) e. NN ) ) |
19 |
16 17 18
|
syl2anc |
|- ( ph -> ( M < N <-> ( N - M ) e. NN ) ) |
20 |
3 19
|
mpbid |
|- ( ph -> ( N - M ) e. NN ) |
21 |
|
nnm1nn0 |
|- ( ( N - M ) e. NN -> ( ( N - M ) - 1 ) e. NN0 ) |
22 |
20 21
|
syl |
|- ( ph -> ( ( N - M ) - 1 ) e. NN0 ) |
23 |
22
|
adantr |
|- ( ( ph /\ x e. CC ) -> ( ( N - M ) - 1 ) e. NN0 ) |
24 |
15 23
|
expcld |
|- ( ( ph /\ x e. CC ) -> ( ( 1 - x ) ^ ( ( N - M ) - 1 ) ) e. CC ) |
25 |
7 24
|
sylan2 |
|- ( ( ph /\ x e. ( 0 [,] 1 ) ) -> ( ( 1 - x ) ^ ( ( N - M ) - 1 ) ) e. CC ) |
26 |
12 25
|
mulcld |
|- ( ( ph /\ x e. ( 0 [,] 1 ) ) -> ( ( x ^ M ) x. ( ( 1 - x ) ^ ( ( N - M ) - 1 ) ) ) e. CC ) |
27 |
|
0red |
|- ( ph -> 0 e. RR ) |
28 |
|
1red |
|- ( ph -> 1 e. RR ) |
29 |
|
expcncf |
|- ( M e. NN0 -> ( x e. CC |-> ( x ^ M ) ) e. ( CC -cn-> CC ) ) |
30 |
8 29
|
syl |
|- ( ph -> ( x e. CC |-> ( x ^ M ) ) e. ( CC -cn-> CC ) ) |
31 |
|
1nn |
|- 1 e. NN |
32 |
31
|
a1i |
|- ( ph -> 1 e. NN ) |
33 |
20
|
nnge1d |
|- ( ph -> 1 <_ ( N - M ) ) |
34 |
32 20 33
|
lcmineqlem9 |
|- ( ph -> ( x e. CC |-> ( ( 1 - x ) ^ ( ( N - M ) - 1 ) ) ) e. ( CC -cn-> CC ) ) |
35 |
30 34
|
mulcncf |
|- ( ph -> ( x e. CC |-> ( ( x ^ M ) x. ( ( 1 - x ) ^ ( ( N - M ) - 1 ) ) ) ) e. ( CC -cn-> CC ) ) |
36 |
35
|
resclunitintvd |
|- ( ph -> ( x e. ( 0 [,] 1 ) |-> ( ( x ^ M ) x. ( ( 1 - x ) ^ ( ( N - M ) - 1 ) ) ) ) e. ( ( 0 [,] 1 ) -cn-> CC ) ) |
37 |
|
cnicciblnc |
|- ( ( 0 e. RR /\ 1 e. RR /\ ( x e. ( 0 [,] 1 ) |-> ( ( x ^ M ) x. ( ( 1 - x ) ^ ( ( N - M ) - 1 ) ) ) ) e. ( ( 0 [,] 1 ) -cn-> CC ) ) -> ( x e. ( 0 [,] 1 ) |-> ( ( x ^ M ) x. ( ( 1 - x ) ^ ( ( N - M ) - 1 ) ) ) ) e. L^1 ) |
38 |
27 28 36 37
|
syl3anc |
|- ( ph -> ( x e. ( 0 [,] 1 ) |-> ( ( x ^ M ) x. ( ( 1 - x ) ^ ( ( N - M ) - 1 ) ) ) ) e. L^1 ) |
39 |
26 38
|
itgcl |
|- ( ph -> S. ( 0 [,] 1 ) ( ( x ^ M ) x. ( ( 1 - x ) ^ ( ( N - M ) - 1 ) ) ) _d x e. CC ) |
40 |
6 39
|
mulneg1d |
|- ( ph -> ( -u ( N - M ) x. S. ( 0 [,] 1 ) ( ( x ^ M ) x. ( ( 1 - x ) ^ ( ( N - M ) - 1 ) ) ) _d x ) = -u ( ( N - M ) x. S. ( 0 [,] 1 ) ( ( x ^ M ) x. ( ( 1 - x ) ^ ( ( N - M ) - 1 ) ) ) _d x ) ) |
41 |
6
|
negcld |
|- ( ph -> -u ( N - M ) e. CC ) |
42 |
41 26 38
|
itgmulc2 |
|- ( ph -> ( -u ( N - M ) x. S. ( 0 [,] 1 ) ( ( x ^ M ) x. ( ( 1 - x ) ^ ( ( N - M ) - 1 ) ) ) _d x ) = S. ( 0 [,] 1 ) ( -u ( N - M ) x. ( ( x ^ M ) x. ( ( 1 - x ) ^ ( ( N - M ) - 1 ) ) ) ) _d x ) |
43 |
4
|
adantr |
|- ( ( ph /\ x e. CC ) -> N e. CC ) |
44 |
5
|
adantr |
|- ( ( ph /\ x e. CC ) -> M e. CC ) |
45 |
43 44
|
subcld |
|- ( ( ph /\ x e. CC ) -> ( N - M ) e. CC ) |
46 |
45
|
negcld |
|- ( ( ph /\ x e. CC ) -> -u ( N - M ) e. CC ) |
47 |
11 46 24
|
mul12d |
|- ( ( ph /\ x e. CC ) -> ( ( x ^ M ) x. ( -u ( N - M ) x. ( ( 1 - x ) ^ ( ( N - M ) - 1 ) ) ) ) = ( -u ( N - M ) x. ( ( x ^ M ) x. ( ( 1 - x ) ^ ( ( N - M ) - 1 ) ) ) ) ) |
48 |
7 47
|
sylan2 |
|- ( ( ph /\ x e. ( 0 [,] 1 ) ) -> ( ( x ^ M ) x. ( -u ( N - M ) x. ( ( 1 - x ) ^ ( ( N - M ) - 1 ) ) ) ) = ( -u ( N - M ) x. ( ( x ^ M ) x. ( ( 1 - x ) ^ ( ( N - M ) - 1 ) ) ) ) ) |
49 |
48
|
itgeq2dv |
|- ( ph -> S. ( 0 [,] 1 ) ( ( x ^ M ) x. ( -u ( N - M ) x. ( ( 1 - x ) ^ ( ( N - M ) - 1 ) ) ) ) _d x = S. ( 0 [,] 1 ) ( -u ( N - M ) x. ( ( x ^ M ) x. ( ( 1 - x ) ^ ( ( N - M ) - 1 ) ) ) ) _d x ) |
50 |
4
|
adantr |
|- ( ( ph /\ x e. ( 0 [,] 1 ) ) -> N e. CC ) |
51 |
5
|
adantr |
|- ( ( ph /\ x e. ( 0 [,] 1 ) ) -> M e. CC ) |
52 |
50 51
|
subcld |
|- ( ( ph /\ x e. ( 0 [,] 1 ) ) -> ( N - M ) e. CC ) |
53 |
52
|
negcld |
|- ( ( ph /\ x e. ( 0 [,] 1 ) ) -> -u ( N - M ) e. CC ) |
54 |
53 25
|
mulcld |
|- ( ( ph /\ x e. ( 0 [,] 1 ) ) -> ( -u ( N - M ) x. ( ( 1 - x ) ^ ( ( N - M ) - 1 ) ) ) e. CC ) |
55 |
12 54
|
mulcld |
|- ( ( ph /\ x e. ( 0 [,] 1 ) ) -> ( ( x ^ M ) x. ( -u ( N - M ) x. ( ( 1 - x ) ^ ( ( N - M ) - 1 ) ) ) ) e. CC ) |
56 |
27 28 55
|
itgioo |
|- ( ph -> S. ( 0 (,) 1 ) ( ( x ^ M ) x. ( -u ( N - M ) x. ( ( 1 - x ) ^ ( ( N - M ) - 1 ) ) ) ) _d x = S. ( 0 [,] 1 ) ( ( x ^ M ) x. ( -u ( N - M ) x. ( ( 1 - x ) ^ ( ( N - M ) - 1 ) ) ) ) _d x ) |
57 |
|
0le1 |
|- 0 <_ 1 |
58 |
57
|
a1i |
|- ( ph -> 0 <_ 1 ) |
59 |
30
|
resclunitintvd |
|- ( ph -> ( x e. ( 0 [,] 1 ) |-> ( x ^ M ) ) e. ( ( 0 [,] 1 ) -cn-> CC ) ) |
60 |
1
|
nnred |
|- ( ph -> M e. RR ) |
61 |
2
|
nnred |
|- ( ph -> N e. RR ) |
62 |
|
ltle |
|- ( ( M e. RR /\ N e. RR ) -> ( M < N -> M <_ N ) ) |
63 |
60 61 62
|
syl2anc |
|- ( ph -> ( M < N -> M <_ N ) ) |
64 |
3 63
|
mpd |
|- ( ph -> M <_ N ) |
65 |
1 2 64
|
lcmineqlem9 |
|- ( ph -> ( x e. CC |-> ( ( 1 - x ) ^ ( N - M ) ) ) e. ( CC -cn-> CC ) ) |
66 |
65
|
resclunitintvd |
|- ( ph -> ( x e. ( 0 [,] 1 ) |-> ( ( 1 - x ) ^ ( N - M ) ) ) e. ( ( 0 [,] 1 ) -cn-> CC ) ) |
67 |
|
ssid |
|- CC C_ CC |
68 |
|
cncfmptc |
|- ( ( M e. CC /\ CC C_ CC /\ CC C_ CC ) -> ( x e. CC |-> M ) e. ( CC -cn-> CC ) ) |
69 |
67 67 68
|
mp3an23 |
|- ( M e. CC -> ( x e. CC |-> M ) e. ( CC -cn-> CC ) ) |
70 |
5 69
|
syl |
|- ( ph -> ( x e. CC |-> M ) e. ( CC -cn-> CC ) ) |
71 |
70
|
resopunitintvd |
|- ( ph -> ( x e. ( 0 (,) 1 ) |-> M ) e. ( ( 0 (,) 1 ) -cn-> CC ) ) |
72 |
|
nnm1nn0 |
|- ( M e. NN -> ( M - 1 ) e. NN0 ) |
73 |
|
expcncf |
|- ( ( M - 1 ) e. NN0 -> ( x e. CC |-> ( x ^ ( M - 1 ) ) ) e. ( CC -cn-> CC ) ) |
74 |
1 72 73
|
3syl |
|- ( ph -> ( x e. CC |-> ( x ^ ( M - 1 ) ) ) e. ( CC -cn-> CC ) ) |
75 |
74
|
resopunitintvd |
|- ( ph -> ( x e. ( 0 (,) 1 ) |-> ( x ^ ( M - 1 ) ) ) e. ( ( 0 (,) 1 ) -cn-> CC ) ) |
76 |
71 75
|
mulcncf |
|- ( ph -> ( x e. ( 0 (,) 1 ) |-> ( M x. ( x ^ ( M - 1 ) ) ) ) e. ( ( 0 (,) 1 ) -cn-> CC ) ) |
77 |
|
cncfmptc |
|- ( ( -u ( N - M ) e. CC /\ CC C_ CC /\ CC C_ CC ) -> ( x e. CC |-> -u ( N - M ) ) e. ( CC -cn-> CC ) ) |
78 |
67 67 77
|
mp3an23 |
|- ( -u ( N - M ) e. CC -> ( x e. CC |-> -u ( N - M ) ) e. ( CC -cn-> CC ) ) |
79 |
41 78
|
syl |
|- ( ph -> ( x e. CC |-> -u ( N - M ) ) e. ( CC -cn-> CC ) ) |
80 |
79
|
resopunitintvd |
|- ( ph -> ( x e. ( 0 (,) 1 ) |-> -u ( N - M ) ) e. ( ( 0 (,) 1 ) -cn-> CC ) ) |
81 |
34
|
resopunitintvd |
|- ( ph -> ( x e. ( 0 (,) 1 ) |-> ( ( 1 - x ) ^ ( ( N - M ) - 1 ) ) ) e. ( ( 0 (,) 1 ) -cn-> CC ) ) |
82 |
80 81
|
mulcncf |
|- ( ph -> ( x e. ( 0 (,) 1 ) |-> ( -u ( N - M ) x. ( ( 1 - x ) ^ ( ( N - M ) - 1 ) ) ) ) e. ( ( 0 (,) 1 ) -cn-> CC ) ) |
83 |
|
ioossicc |
|- ( 0 (,) 1 ) C_ ( 0 [,] 1 ) |
84 |
83
|
a1i |
|- ( ph -> ( 0 (,) 1 ) C_ ( 0 [,] 1 ) ) |
85 |
|
ioombl |
|- ( 0 (,) 1 ) e. dom vol |
86 |
85
|
a1i |
|- ( ph -> ( 0 (,) 1 ) e. dom vol ) |
87 |
79 34
|
mulcncf |
|- ( ph -> ( x e. CC |-> ( -u ( N - M ) x. ( ( 1 - x ) ^ ( ( N - M ) - 1 ) ) ) ) e. ( CC -cn-> CC ) ) |
88 |
30 87
|
mulcncf |
|- ( ph -> ( x e. CC |-> ( ( x ^ M ) x. ( -u ( N - M ) x. ( ( 1 - x ) ^ ( ( N - M ) - 1 ) ) ) ) ) e. ( CC -cn-> CC ) ) |
89 |
88
|
resclunitintvd |
|- ( ph -> ( x e. ( 0 [,] 1 ) |-> ( ( x ^ M ) x. ( -u ( N - M ) x. ( ( 1 - x ) ^ ( ( N - M ) - 1 ) ) ) ) ) e. ( ( 0 [,] 1 ) -cn-> CC ) ) |
90 |
|
cnicciblnc |
|- ( ( 0 e. RR /\ 1 e. RR /\ ( x e. ( 0 [,] 1 ) |-> ( ( x ^ M ) x. ( -u ( N - M ) x. ( ( 1 - x ) ^ ( ( N - M ) - 1 ) ) ) ) ) e. ( ( 0 [,] 1 ) -cn-> CC ) ) -> ( x e. ( 0 [,] 1 ) |-> ( ( x ^ M ) x. ( -u ( N - M ) x. ( ( 1 - x ) ^ ( ( N - M ) - 1 ) ) ) ) ) e. L^1 ) |
91 |
27 28 89 90
|
syl3anc |
|- ( ph -> ( x e. ( 0 [,] 1 ) |-> ( ( x ^ M ) x. ( -u ( N - M ) x. ( ( 1 - x ) ^ ( ( N - M ) - 1 ) ) ) ) ) e. L^1 ) |
92 |
84 86 55 91
|
iblss |
|- ( ph -> ( x e. ( 0 (,) 1 ) |-> ( ( x ^ M ) x. ( -u ( N - M ) x. ( ( 1 - x ) ^ ( ( N - M ) - 1 ) ) ) ) ) e. L^1 ) |
93 |
1 72
|
syl |
|- ( ph -> ( M - 1 ) e. NN0 ) |
94 |
|
expcl |
|- ( ( x e. CC /\ ( M - 1 ) e. NN0 ) -> ( x ^ ( M - 1 ) ) e. CC ) |
95 |
93 94
|
sylan2 |
|- ( ( x e. CC /\ ph ) -> ( x ^ ( M - 1 ) ) e. CC ) |
96 |
95
|
ancoms |
|- ( ( ph /\ x e. CC ) -> ( x ^ ( M - 1 ) ) e. CC ) |
97 |
7 96
|
sylan2 |
|- ( ( ph /\ x e. ( 0 [,] 1 ) ) -> ( x ^ ( M - 1 ) ) e. CC ) |
98 |
51 97
|
mulcld |
|- ( ( ph /\ x e. ( 0 [,] 1 ) ) -> ( M x. ( x ^ ( M - 1 ) ) ) e. CC ) |
99 |
20
|
nnnn0d |
|- ( ph -> ( N - M ) e. NN0 ) |
100 |
99
|
adantr |
|- ( ( ph /\ x e. CC ) -> ( N - M ) e. NN0 ) |
101 |
15 100
|
expcld |
|- ( ( ph /\ x e. CC ) -> ( ( 1 - x ) ^ ( N - M ) ) e. CC ) |
102 |
7 101
|
sylan2 |
|- ( ( ph /\ x e. ( 0 [,] 1 ) ) -> ( ( 1 - x ) ^ ( N - M ) ) e. CC ) |
103 |
98 102
|
mulcld |
|- ( ( ph /\ x e. ( 0 [,] 1 ) ) -> ( ( M x. ( x ^ ( M - 1 ) ) ) x. ( ( 1 - x ) ^ ( N - M ) ) ) e. CC ) |
104 |
70 74
|
mulcncf |
|- ( ph -> ( x e. CC |-> ( M x. ( x ^ ( M - 1 ) ) ) ) e. ( CC -cn-> CC ) ) |
105 |
104 65
|
mulcncf |
|- ( ph -> ( x e. CC |-> ( ( M x. ( x ^ ( M - 1 ) ) ) x. ( ( 1 - x ) ^ ( N - M ) ) ) ) e. ( CC -cn-> CC ) ) |
106 |
105
|
resclunitintvd |
|- ( ph -> ( x e. ( 0 [,] 1 ) |-> ( ( M x. ( x ^ ( M - 1 ) ) ) x. ( ( 1 - x ) ^ ( N - M ) ) ) ) e. ( ( 0 [,] 1 ) -cn-> CC ) ) |
107 |
|
cnicciblnc |
|- ( ( 0 e. RR /\ 1 e. RR /\ ( x e. ( 0 [,] 1 ) |-> ( ( M x. ( x ^ ( M - 1 ) ) ) x. ( ( 1 - x ) ^ ( N - M ) ) ) ) e. ( ( 0 [,] 1 ) -cn-> CC ) ) -> ( x e. ( 0 [,] 1 ) |-> ( ( M x. ( x ^ ( M - 1 ) ) ) x. ( ( 1 - x ) ^ ( N - M ) ) ) ) e. L^1 ) |
108 |
27 28 106 107
|
syl3anc |
|- ( ph -> ( x e. ( 0 [,] 1 ) |-> ( ( M x. ( x ^ ( M - 1 ) ) ) x. ( ( 1 - x ) ^ ( N - M ) ) ) ) e. L^1 ) |
109 |
84 86 103 108
|
iblss |
|- ( ph -> ( x e. ( 0 (,) 1 ) |-> ( ( M x. ( x ^ ( M - 1 ) ) ) x. ( ( 1 - x ) ^ ( N - M ) ) ) ) e. L^1 ) |
110 |
|
dvexp |
|- ( M e. NN -> ( CC _D ( x e. CC |-> ( x ^ M ) ) ) = ( x e. CC |-> ( M x. ( x ^ ( M - 1 ) ) ) ) ) |
111 |
1 110
|
syl |
|- ( ph -> ( CC _D ( x e. CC |-> ( x ^ M ) ) ) = ( x e. CC |-> ( M x. ( x ^ ( M - 1 ) ) ) ) ) |
112 |
44 96
|
mulcld |
|- ( ( ph /\ x e. CC ) -> ( M x. ( x ^ ( M - 1 ) ) ) e. CC ) |
113 |
111 11 112
|
resdvopclptsd |
|- ( ph -> ( RR _D ( x e. ( 0 [,] 1 ) |-> ( x ^ M ) ) ) = ( x e. ( 0 (,) 1 ) |-> ( M x. ( x ^ ( M - 1 ) ) ) ) ) |
114 |
1 2 3
|
lcmineqlem8 |
|- ( ph -> ( CC _D ( x e. CC |-> ( ( 1 - x ) ^ ( N - M ) ) ) ) = ( x e. CC |-> ( -u ( N - M ) x. ( ( 1 - x ) ^ ( ( N - M ) - 1 ) ) ) ) ) |
115 |
46 24
|
mulcld |
|- ( ( ph /\ x e. CC ) -> ( -u ( N - M ) x. ( ( 1 - x ) ^ ( ( N - M ) - 1 ) ) ) e. CC ) |
116 |
114 101 115
|
resdvopclptsd |
|- ( ph -> ( RR _D ( x e. ( 0 [,] 1 ) |-> ( ( 1 - x ) ^ ( N - M ) ) ) ) = ( x e. ( 0 (,) 1 ) |-> ( -u ( N - M ) x. ( ( 1 - x ) ^ ( ( N - M ) - 1 ) ) ) ) ) |
117 |
|
oveq1 |
|- ( x = 0 -> ( x ^ M ) = ( 0 ^ M ) ) |
118 |
117
|
adantl |
|- ( ( ph /\ x = 0 ) -> ( x ^ M ) = ( 0 ^ M ) ) |
119 |
1
|
0expd |
|- ( ph -> ( 0 ^ M ) = 0 ) |
120 |
119
|
adantr |
|- ( ( ph /\ x = 0 ) -> ( 0 ^ M ) = 0 ) |
121 |
118 120
|
eqtrd |
|- ( ( ph /\ x = 0 ) -> ( x ^ M ) = 0 ) |
122 |
121
|
oveq1d |
|- ( ( ph /\ x = 0 ) -> ( ( x ^ M ) x. ( ( 1 - x ) ^ ( N - M ) ) ) = ( 0 x. ( ( 1 - x ) ^ ( N - M ) ) ) ) |
123 |
|
0cn |
|- 0 e. CC |
124 |
|
eleq1 |
|- ( x = 0 -> ( x e. CC <-> 0 e. CC ) ) |
125 |
123 124
|
mpbiri |
|- ( x = 0 -> x e. CC ) |
126 |
101
|
mul02d |
|- ( ( ph /\ x e. CC ) -> ( 0 x. ( ( 1 - x ) ^ ( N - M ) ) ) = 0 ) |
127 |
125 126
|
sylan2 |
|- ( ( ph /\ x = 0 ) -> ( 0 x. ( ( 1 - x ) ^ ( N - M ) ) ) = 0 ) |
128 |
122 127
|
eqtrd |
|- ( ( ph /\ x = 0 ) -> ( ( x ^ M ) x. ( ( 1 - x ) ^ ( N - M ) ) ) = 0 ) |
129 |
|
oveq2 |
|- ( x = 1 -> ( 1 - x ) = ( 1 - 1 ) ) |
130 |
|
1m1e0 |
|- ( 1 - 1 ) = 0 |
131 |
129 130
|
eqtrdi |
|- ( x = 1 -> ( 1 - x ) = 0 ) |
132 |
131
|
oveq1d |
|- ( x = 1 -> ( ( 1 - x ) ^ ( N - M ) ) = ( 0 ^ ( N - M ) ) ) |
133 |
132
|
adantl |
|- ( ( ph /\ x = 1 ) -> ( ( 1 - x ) ^ ( N - M ) ) = ( 0 ^ ( N - M ) ) ) |
134 |
20
|
0expd |
|- ( ph -> ( 0 ^ ( N - M ) ) = 0 ) |
135 |
134
|
adantr |
|- ( ( ph /\ x = 1 ) -> ( 0 ^ ( N - M ) ) = 0 ) |
136 |
133 135
|
eqtrd |
|- ( ( ph /\ x = 1 ) -> ( ( 1 - x ) ^ ( N - M ) ) = 0 ) |
137 |
136
|
oveq2d |
|- ( ( ph /\ x = 1 ) -> ( ( x ^ M ) x. ( ( 1 - x ) ^ ( N - M ) ) ) = ( ( x ^ M ) x. 0 ) ) |
138 |
|
ax-1cn |
|- 1 e. CC |
139 |
|
eleq1 |
|- ( x = 1 -> ( x e. CC <-> 1 e. CC ) ) |
140 |
138 139
|
mpbiri |
|- ( x = 1 -> x e. CC ) |
141 |
11
|
mul01d |
|- ( ( ph /\ x e. CC ) -> ( ( x ^ M ) x. 0 ) = 0 ) |
142 |
140 141
|
sylan2 |
|- ( ( ph /\ x = 1 ) -> ( ( x ^ M ) x. 0 ) = 0 ) |
143 |
137 142
|
eqtrd |
|- ( ( ph /\ x = 1 ) -> ( ( x ^ M ) x. ( ( 1 - x ) ^ ( N - M ) ) ) = 0 ) |
144 |
27 28 58 59 66 76 82 92 109 113 116 128 143
|
itgparts |
|- ( ph -> S. ( 0 (,) 1 ) ( ( x ^ M ) x. ( -u ( N - M ) x. ( ( 1 - x ) ^ ( ( N - M ) - 1 ) ) ) ) _d x = ( ( 0 - 0 ) - S. ( 0 (,) 1 ) ( ( M x. ( x ^ ( M - 1 ) ) ) x. ( ( 1 - x ) ^ ( N - M ) ) ) _d x ) ) |
145 |
56 144
|
eqtr3d |
|- ( ph -> S. ( 0 [,] 1 ) ( ( x ^ M ) x. ( -u ( N - M ) x. ( ( 1 - x ) ^ ( ( N - M ) - 1 ) ) ) ) _d x = ( ( 0 - 0 ) - S. ( 0 (,) 1 ) ( ( M x. ( x ^ ( M - 1 ) ) ) x. ( ( 1 - x ) ^ ( N - M ) ) ) _d x ) ) |
146 |
27 28 103
|
itgioo |
|- ( ph -> S. ( 0 (,) 1 ) ( ( M x. ( x ^ ( M - 1 ) ) ) x. ( ( 1 - x ) ^ ( N - M ) ) ) _d x = S. ( 0 [,] 1 ) ( ( M x. ( x ^ ( M - 1 ) ) ) x. ( ( 1 - x ) ^ ( N - M ) ) ) _d x ) |
147 |
146
|
oveq2d |
|- ( ph -> ( ( 0 - 0 ) - S. ( 0 (,) 1 ) ( ( M x. ( x ^ ( M - 1 ) ) ) x. ( ( 1 - x ) ^ ( N - M ) ) ) _d x ) = ( ( 0 - 0 ) - S. ( 0 [,] 1 ) ( ( M x. ( x ^ ( M - 1 ) ) ) x. ( ( 1 - x ) ^ ( N - M ) ) ) _d x ) ) |
148 |
145 147
|
eqtrd |
|- ( ph -> S. ( 0 [,] 1 ) ( ( x ^ M ) x. ( -u ( N - M ) x. ( ( 1 - x ) ^ ( ( N - M ) - 1 ) ) ) ) _d x = ( ( 0 - 0 ) - S. ( 0 [,] 1 ) ( ( M x. ( x ^ ( M - 1 ) ) ) x. ( ( 1 - x ) ^ ( N - M ) ) ) _d x ) ) |
149 |
|
0m0e0 |
|- ( 0 - 0 ) = 0 |
150 |
149
|
oveq1i |
|- ( ( 0 - 0 ) - S. ( 0 [,] 1 ) ( ( M x. ( x ^ ( M - 1 ) ) ) x. ( ( 1 - x ) ^ ( N - M ) ) ) _d x ) = ( 0 - S. ( 0 [,] 1 ) ( ( M x. ( x ^ ( M - 1 ) ) ) x. ( ( 1 - x ) ^ ( N - M ) ) ) _d x ) |
151 |
148 150
|
eqtrdi |
|- ( ph -> S. ( 0 [,] 1 ) ( ( x ^ M ) x. ( -u ( N - M ) x. ( ( 1 - x ) ^ ( ( N - M ) - 1 ) ) ) ) _d x = ( 0 - S. ( 0 [,] 1 ) ( ( M x. ( x ^ ( M - 1 ) ) ) x. ( ( 1 - x ) ^ ( N - M ) ) ) _d x ) ) |
152 |
49 151
|
eqtr3d |
|- ( ph -> S. ( 0 [,] 1 ) ( -u ( N - M ) x. ( ( x ^ M ) x. ( ( 1 - x ) ^ ( ( N - M ) - 1 ) ) ) ) _d x = ( 0 - S. ( 0 [,] 1 ) ( ( M x. ( x ^ ( M - 1 ) ) ) x. ( ( 1 - x ) ^ ( N - M ) ) ) _d x ) ) |
153 |
42 152
|
eqtrd |
|- ( ph -> ( -u ( N - M ) x. S. ( 0 [,] 1 ) ( ( x ^ M ) x. ( ( 1 - x ) ^ ( ( N - M ) - 1 ) ) ) _d x ) = ( 0 - S. ( 0 [,] 1 ) ( ( M x. ( x ^ ( M - 1 ) ) ) x. ( ( 1 - x ) ^ ( N - M ) ) ) _d x ) ) |
154 |
44 96 101
|
mulassd |
|- ( ( ph /\ x e. CC ) -> ( ( M x. ( x ^ ( M - 1 ) ) ) x. ( ( 1 - x ) ^ ( N - M ) ) ) = ( M x. ( ( x ^ ( M - 1 ) ) x. ( ( 1 - x ) ^ ( N - M ) ) ) ) ) |
155 |
7 154
|
sylan2 |
|- ( ( ph /\ x e. ( 0 [,] 1 ) ) -> ( ( M x. ( x ^ ( M - 1 ) ) ) x. ( ( 1 - x ) ^ ( N - M ) ) ) = ( M x. ( ( x ^ ( M - 1 ) ) x. ( ( 1 - x ) ^ ( N - M ) ) ) ) ) |
156 |
155
|
itgeq2dv |
|- ( ph -> S. ( 0 [,] 1 ) ( ( M x. ( x ^ ( M - 1 ) ) ) x. ( ( 1 - x ) ^ ( N - M ) ) ) _d x = S. ( 0 [,] 1 ) ( M x. ( ( x ^ ( M - 1 ) ) x. ( ( 1 - x ) ^ ( N - M ) ) ) ) _d x ) |
157 |
156
|
oveq2d |
|- ( ph -> ( 0 - S. ( 0 [,] 1 ) ( ( M x. ( x ^ ( M - 1 ) ) ) x. ( ( 1 - x ) ^ ( N - M ) ) ) _d x ) = ( 0 - S. ( 0 [,] 1 ) ( M x. ( ( x ^ ( M - 1 ) ) x. ( ( 1 - x ) ^ ( N - M ) ) ) ) _d x ) ) |
158 |
153 157
|
eqtrd |
|- ( ph -> ( -u ( N - M ) x. S. ( 0 [,] 1 ) ( ( x ^ M ) x. ( ( 1 - x ) ^ ( ( N - M ) - 1 ) ) ) _d x ) = ( 0 - S. ( 0 [,] 1 ) ( M x. ( ( x ^ ( M - 1 ) ) x. ( ( 1 - x ) ^ ( N - M ) ) ) ) _d x ) ) |
159 |
97 102
|
mulcld |
|- ( ( ph /\ x e. ( 0 [,] 1 ) ) -> ( ( x ^ ( M - 1 ) ) x. ( ( 1 - x ) ^ ( N - M ) ) ) e. CC ) |
160 |
74 65
|
mulcncf |
|- ( ph -> ( x e. CC |-> ( ( x ^ ( M - 1 ) ) x. ( ( 1 - x ) ^ ( N - M ) ) ) ) e. ( CC -cn-> CC ) ) |
161 |
160
|
resclunitintvd |
|- ( ph -> ( x e. ( 0 [,] 1 ) |-> ( ( x ^ ( M - 1 ) ) x. ( ( 1 - x ) ^ ( N - M ) ) ) ) e. ( ( 0 [,] 1 ) -cn-> CC ) ) |
162 |
|
cnicciblnc |
|- ( ( 0 e. RR /\ 1 e. RR /\ ( x e. ( 0 [,] 1 ) |-> ( ( x ^ ( M - 1 ) ) x. ( ( 1 - x ) ^ ( N - M ) ) ) ) e. ( ( 0 [,] 1 ) -cn-> CC ) ) -> ( x e. ( 0 [,] 1 ) |-> ( ( x ^ ( M - 1 ) ) x. ( ( 1 - x ) ^ ( N - M ) ) ) ) e. L^1 ) |
163 |
27 28 161 162
|
syl3anc |
|- ( ph -> ( x e. ( 0 [,] 1 ) |-> ( ( x ^ ( M - 1 ) ) x. ( ( 1 - x ) ^ ( N - M ) ) ) ) e. L^1 ) |
164 |
5 159 163
|
itgmulc2 |
|- ( ph -> ( M x. S. ( 0 [,] 1 ) ( ( x ^ ( M - 1 ) ) x. ( ( 1 - x ) ^ ( N - M ) ) ) _d x ) = S. ( 0 [,] 1 ) ( M x. ( ( x ^ ( M - 1 ) ) x. ( ( 1 - x ) ^ ( N - M ) ) ) ) _d x ) |
165 |
164
|
oveq2d |
|- ( ph -> ( 0 - ( M x. S. ( 0 [,] 1 ) ( ( x ^ ( M - 1 ) ) x. ( ( 1 - x ) ^ ( N - M ) ) ) _d x ) ) = ( 0 - S. ( 0 [,] 1 ) ( M x. ( ( x ^ ( M - 1 ) ) x. ( ( 1 - x ) ^ ( N - M ) ) ) ) _d x ) ) |
166 |
158 165
|
eqtr4d |
|- ( ph -> ( -u ( N - M ) x. S. ( 0 [,] 1 ) ( ( x ^ M ) x. ( ( 1 - x ) ^ ( ( N - M ) - 1 ) ) ) _d x ) = ( 0 - ( M x. S. ( 0 [,] 1 ) ( ( x ^ ( M - 1 ) ) x. ( ( 1 - x ) ^ ( N - M ) ) ) _d x ) ) ) |
167 |
|
df-neg |
|- -u ( M x. S. ( 0 [,] 1 ) ( ( x ^ ( M - 1 ) ) x. ( ( 1 - x ) ^ ( N - M ) ) ) _d x ) = ( 0 - ( M x. S. ( 0 [,] 1 ) ( ( x ^ ( M - 1 ) ) x. ( ( 1 - x ) ^ ( N - M ) ) ) _d x ) ) |
168 |
166 167
|
eqtr4di |
|- ( ph -> ( -u ( N - M ) x. S. ( 0 [,] 1 ) ( ( x ^ M ) x. ( ( 1 - x ) ^ ( ( N - M ) - 1 ) ) ) _d x ) = -u ( M x. S. ( 0 [,] 1 ) ( ( x ^ ( M - 1 ) ) x. ( ( 1 - x ) ^ ( N - M ) ) ) _d x ) ) |
169 |
40 168
|
eqtr3d |
|- ( ph -> -u ( ( N - M ) x. S. ( 0 [,] 1 ) ( ( x ^ M ) x. ( ( 1 - x ) ^ ( ( N - M ) - 1 ) ) ) _d x ) = -u ( M x. S. ( 0 [,] 1 ) ( ( x ^ ( M - 1 ) ) x. ( ( 1 - x ) ^ ( N - M ) ) ) _d x ) ) |
170 |
6 39
|
mulcld |
|- ( ph -> ( ( N - M ) x. S. ( 0 [,] 1 ) ( ( x ^ M ) x. ( ( 1 - x ) ^ ( ( N - M ) - 1 ) ) ) _d x ) e. CC ) |
171 |
159 163
|
itgcl |
|- ( ph -> S. ( 0 [,] 1 ) ( ( x ^ ( M - 1 ) ) x. ( ( 1 - x ) ^ ( N - M ) ) ) _d x e. CC ) |
172 |
5 171
|
mulcld |
|- ( ph -> ( M x. S. ( 0 [,] 1 ) ( ( x ^ ( M - 1 ) ) x. ( ( 1 - x ) ^ ( N - M ) ) ) _d x ) e. CC ) |
173 |
170 172
|
neg11ad |
|- ( ph -> ( -u ( ( N - M ) x. S. ( 0 [,] 1 ) ( ( x ^ M ) x. ( ( 1 - x ) ^ ( ( N - M ) - 1 ) ) ) _d x ) = -u ( M x. S. ( 0 [,] 1 ) ( ( x ^ ( M - 1 ) ) x. ( ( 1 - x ) ^ ( N - M ) ) ) _d x ) <-> ( ( N - M ) x. S. ( 0 [,] 1 ) ( ( x ^ M ) x. ( ( 1 - x ) ^ ( ( N - M ) - 1 ) ) ) _d x ) = ( M x. S. ( 0 [,] 1 ) ( ( x ^ ( M - 1 ) ) x. ( ( 1 - x ) ^ ( N - M ) ) ) _d x ) ) ) |
174 |
169 173
|
mpbid |
|- ( ph -> ( ( N - M ) x. S. ( 0 [,] 1 ) ( ( x ^ M ) x. ( ( 1 - x ) ^ ( ( N - M ) - 1 ) ) ) _d x ) = ( M x. S. ( 0 [,] 1 ) ( ( x ^ ( M - 1 ) ) x. ( ( 1 - x ) ^ ( N - M ) ) ) _d x ) ) |
175 |
20
|
nnne0d |
|- ( ph -> ( N - M ) =/= 0 ) |
176 |
172 6 39 175
|
divmuld |
|- ( ph -> ( ( ( M x. S. ( 0 [,] 1 ) ( ( x ^ ( M - 1 ) ) x. ( ( 1 - x ) ^ ( N - M ) ) ) _d x ) / ( N - M ) ) = S. ( 0 [,] 1 ) ( ( x ^ M ) x. ( ( 1 - x ) ^ ( ( N - M ) - 1 ) ) ) _d x <-> ( ( N - M ) x. S. ( 0 [,] 1 ) ( ( x ^ M ) x. ( ( 1 - x ) ^ ( ( N - M ) - 1 ) ) ) _d x ) = ( M x. S. ( 0 [,] 1 ) ( ( x ^ ( M - 1 ) ) x. ( ( 1 - x ) ^ ( N - M ) ) ) _d x ) ) ) |
177 |
174 176
|
mpbird |
|- ( ph -> ( ( M x. S. ( 0 [,] 1 ) ( ( x ^ ( M - 1 ) ) x. ( ( 1 - x ) ^ ( N - M ) ) ) _d x ) / ( N - M ) ) = S. ( 0 [,] 1 ) ( ( x ^ M ) x. ( ( 1 - x ) ^ ( ( N - M ) - 1 ) ) ) _d x ) |
178 |
138
|
a1i |
|- ( ph -> 1 e. CC ) |
179 |
5 178
|
pncand |
|- ( ph -> ( ( M + 1 ) - 1 ) = M ) |
180 |
179
|
eqcomd |
|- ( ph -> M = ( ( M + 1 ) - 1 ) ) |
181 |
180
|
oveq2d |
|- ( ph -> ( x ^ M ) = ( x ^ ( ( M + 1 ) - 1 ) ) ) |
182 |
4 5 178
|
subsub4d |
|- ( ph -> ( ( N - M ) - 1 ) = ( N - ( M + 1 ) ) ) |
183 |
182
|
oveq2d |
|- ( ph -> ( ( 1 - x ) ^ ( ( N - M ) - 1 ) ) = ( ( 1 - x ) ^ ( N - ( M + 1 ) ) ) ) |
184 |
181 183
|
oveq12d |
|- ( ph -> ( ( x ^ M ) x. ( ( 1 - x ) ^ ( ( N - M ) - 1 ) ) ) = ( ( x ^ ( ( M + 1 ) - 1 ) ) x. ( ( 1 - x ) ^ ( N - ( M + 1 ) ) ) ) ) |
185 |
184
|
adantr |
|- ( ( ph /\ x e. ( 0 [,] 1 ) ) -> ( ( x ^ M ) x. ( ( 1 - x ) ^ ( ( N - M ) - 1 ) ) ) = ( ( x ^ ( ( M + 1 ) - 1 ) ) x. ( ( 1 - x ) ^ ( N - ( M + 1 ) ) ) ) ) |
186 |
185
|
itgeq2dv |
|- ( ph -> S. ( 0 [,] 1 ) ( ( x ^ M ) x. ( ( 1 - x ) ^ ( ( N - M ) - 1 ) ) ) _d x = S. ( 0 [,] 1 ) ( ( x ^ ( ( M + 1 ) - 1 ) ) x. ( ( 1 - x ) ^ ( N - ( M + 1 ) ) ) ) _d x ) |
187 |
177 186
|
eqtrd |
|- ( ph -> ( ( M x. S. ( 0 [,] 1 ) ( ( x ^ ( M - 1 ) ) x. ( ( 1 - x ) ^ ( N - M ) ) ) _d x ) / ( N - M ) ) = S. ( 0 [,] 1 ) ( ( x ^ ( ( M + 1 ) - 1 ) ) x. ( ( 1 - x ) ^ ( N - ( M + 1 ) ) ) ) _d x ) |
188 |
187
|
eqcomd |
|- ( ph -> S. ( 0 [,] 1 ) ( ( x ^ ( ( M + 1 ) - 1 ) ) x. ( ( 1 - x ) ^ ( N - ( M + 1 ) ) ) ) _d x = ( ( M x. S. ( 0 [,] 1 ) ( ( x ^ ( M - 1 ) ) x. ( ( 1 - x ) ^ ( N - M ) ) ) _d x ) / ( N - M ) ) ) |
189 |
5 171 6 175
|
div23d |
|- ( ph -> ( ( M x. S. ( 0 [,] 1 ) ( ( x ^ ( M - 1 ) ) x. ( ( 1 - x ) ^ ( N - M ) ) ) _d x ) / ( N - M ) ) = ( ( M / ( N - M ) ) x. S. ( 0 [,] 1 ) ( ( x ^ ( M - 1 ) ) x. ( ( 1 - x ) ^ ( N - M ) ) ) _d x ) ) |
190 |
188 189
|
eqtrd |
|- ( ph -> S. ( 0 [,] 1 ) ( ( x ^ ( ( M + 1 ) - 1 ) ) x. ( ( 1 - x ) ^ ( N - ( M + 1 ) ) ) ) _d x = ( ( M / ( N - M ) ) x. S. ( 0 [,] 1 ) ( ( x ^ ( M - 1 ) ) x. ( ( 1 - x ) ^ ( N - M ) ) ) _d x ) ) |