| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lcmineqlem9.1 |
|- ( ph -> M e. NN ) |
| 2 |
|
lcmineqlem9.2 |
|- ( ph -> N e. NN ) |
| 3 |
|
lcmineqlem9.3 |
|- ( ph -> M <_ N ) |
| 4 |
|
nfv |
|- F/ x ph |
| 5 |
|
ax-1cn |
|- 1 e. CC |
| 6 |
|
eqid |
|- ( x e. CC |-> ( 1 - x ) ) = ( x e. CC |-> ( 1 - x ) ) |
| 7 |
6
|
sub2cncf |
|- ( 1 e. CC -> ( x e. CC |-> ( 1 - x ) ) e. ( CC -cn-> CC ) ) |
| 8 |
5 7
|
mp1i |
|- ( ph -> ( x e. CC |-> ( 1 - x ) ) e. ( CC -cn-> CC ) ) |
| 9 |
1
|
nnzd |
|- ( ph -> M e. ZZ ) |
| 10 |
2
|
nnzd |
|- ( ph -> N e. ZZ ) |
| 11 |
|
znn0sub |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M <_ N <-> ( N - M ) e. NN0 ) ) |
| 12 |
9 10 11
|
syl2anc |
|- ( ph -> ( M <_ N <-> ( N - M ) e. NN0 ) ) |
| 13 |
3 12
|
mpbid |
|- ( ph -> ( N - M ) e. NN0 ) |
| 14 |
|
expcncf |
|- ( ( N - M ) e. NN0 -> ( y e. CC |-> ( y ^ ( N - M ) ) ) e. ( CC -cn-> CC ) ) |
| 15 |
13 14
|
syl |
|- ( ph -> ( y e. CC |-> ( y ^ ( N - M ) ) ) e. ( CC -cn-> CC ) ) |
| 16 |
|
ssidd |
|- ( ph -> CC C_ CC ) |
| 17 |
|
oveq1 |
|- ( y = ( 1 - x ) -> ( y ^ ( N - M ) ) = ( ( 1 - x ) ^ ( N - M ) ) ) |
| 18 |
4 8 15 16 17
|
cncfcompt2 |
|- ( ph -> ( x e. CC |-> ( ( 1 - x ) ^ ( N - M ) ) ) e. ( CC -cn-> CC ) ) |