Step |
Hyp |
Ref |
Expression |
1 |
|
lcmineqlem9.1 |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
2 |
|
lcmineqlem9.2 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
3 |
|
lcmineqlem9.3 |
⊢ ( 𝜑 → 𝑀 ≤ 𝑁 ) |
4 |
|
nfv |
⊢ Ⅎ 𝑥 𝜑 |
5 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
6 |
|
eqid |
⊢ ( 𝑥 ∈ ℂ ↦ ( 1 − 𝑥 ) ) = ( 𝑥 ∈ ℂ ↦ ( 1 − 𝑥 ) ) |
7 |
6
|
sub2cncf |
⊢ ( 1 ∈ ℂ → ( 𝑥 ∈ ℂ ↦ ( 1 − 𝑥 ) ) ∈ ( ℂ –cn→ ℂ ) ) |
8 |
5 7
|
mp1i |
⊢ ( 𝜑 → ( 𝑥 ∈ ℂ ↦ ( 1 − 𝑥 ) ) ∈ ( ℂ –cn→ ℂ ) ) |
9 |
1
|
nnzd |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
10 |
2
|
nnzd |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
11 |
|
znn0sub |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ≤ 𝑁 ↔ ( 𝑁 − 𝑀 ) ∈ ℕ0 ) ) |
12 |
9 10 11
|
syl2anc |
⊢ ( 𝜑 → ( 𝑀 ≤ 𝑁 ↔ ( 𝑁 − 𝑀 ) ∈ ℕ0 ) ) |
13 |
3 12
|
mpbid |
⊢ ( 𝜑 → ( 𝑁 − 𝑀 ) ∈ ℕ0 ) |
14 |
|
expcncf |
⊢ ( ( 𝑁 − 𝑀 ) ∈ ℕ0 → ( 𝑦 ∈ ℂ ↦ ( 𝑦 ↑ ( 𝑁 − 𝑀 ) ) ) ∈ ( ℂ –cn→ ℂ ) ) |
15 |
13 14
|
syl |
⊢ ( 𝜑 → ( 𝑦 ∈ ℂ ↦ ( 𝑦 ↑ ( 𝑁 − 𝑀 ) ) ) ∈ ( ℂ –cn→ ℂ ) ) |
16 |
|
ssidd |
⊢ ( 𝜑 → ℂ ⊆ ℂ ) |
17 |
|
oveq1 |
⊢ ( 𝑦 = ( 1 − 𝑥 ) → ( 𝑦 ↑ ( 𝑁 − 𝑀 ) ) = ( ( 1 − 𝑥 ) ↑ ( 𝑁 − 𝑀 ) ) ) |
18 |
4 8 15 16 17
|
cncfcompt2 |
⊢ ( 𝜑 → ( 𝑥 ∈ ℂ ↦ ( ( 1 − 𝑥 ) ↑ ( 𝑁 − 𝑀 ) ) ) ∈ ( ℂ –cn→ ℂ ) ) |