Step |
Hyp |
Ref |
Expression |
1 |
|
lcmineqlem8.1 |
|- ( ph -> M e. NN ) |
2 |
|
lcmineqlem8.2 |
|- ( ph -> N e. NN ) |
3 |
|
lcmineqlem8.3 |
|- ( ph -> M < N ) |
4 |
|
cnelprrecn |
|- CC e. { RR , CC } |
5 |
4
|
a1i |
|- ( ph -> CC e. { RR , CC } ) |
6 |
|
1cnd |
|- ( ( ph /\ x e. CC ) -> 1 e. CC ) |
7 |
|
simpr |
|- ( ( ph /\ x e. CC ) -> x e. CC ) |
8 |
6 7
|
subcld |
|- ( ( ph /\ x e. CC ) -> ( 1 - x ) e. CC ) |
9 |
|
neg1cn |
|- -u 1 e. CC |
10 |
9
|
a1i |
|- ( ( ph /\ x e. CC ) -> -u 1 e. CC ) |
11 |
|
simpr |
|- ( ( ph /\ y e. CC ) -> y e. CC ) |
12 |
1
|
nnzd |
|- ( ph -> M e. ZZ ) |
13 |
2
|
nnzd |
|- ( ph -> N e. ZZ ) |
14 |
|
znnsub |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M < N <-> ( N - M ) e. NN ) ) |
15 |
12 13 14
|
syl2anc |
|- ( ph -> ( M < N <-> ( N - M ) e. NN ) ) |
16 |
3 15
|
mpbid |
|- ( ph -> ( N - M ) e. NN ) |
17 |
16
|
nnnn0d |
|- ( ph -> ( N - M ) e. NN0 ) |
18 |
17
|
adantr |
|- ( ( ph /\ y e. CC ) -> ( N - M ) e. NN0 ) |
19 |
11 18
|
expcld |
|- ( ( ph /\ y e. CC ) -> ( y ^ ( N - M ) ) e. CC ) |
20 |
2
|
nncnd |
|- ( ph -> N e. CC ) |
21 |
20
|
adantr |
|- ( ( ph /\ y e. CC ) -> N e. CC ) |
22 |
1
|
nncnd |
|- ( ph -> M e. CC ) |
23 |
22
|
adantr |
|- ( ( ph /\ y e. CC ) -> M e. CC ) |
24 |
21 23
|
subcld |
|- ( ( ph /\ y e. CC ) -> ( N - M ) e. CC ) |
25 |
|
nnm1nn0 |
|- ( ( N - M ) e. NN -> ( ( N - M ) - 1 ) e. NN0 ) |
26 |
16 25
|
syl |
|- ( ph -> ( ( N - M ) - 1 ) e. NN0 ) |
27 |
26
|
adantr |
|- ( ( ph /\ y e. CC ) -> ( ( N - M ) - 1 ) e. NN0 ) |
28 |
|
expcl |
|- ( ( y e. CC /\ ( ( N - M ) - 1 ) e. NN0 ) -> ( y ^ ( ( N - M ) - 1 ) ) e. CC ) |
29 |
11 27 28
|
syl2anc |
|- ( ( ph /\ y e. CC ) -> ( y ^ ( ( N - M ) - 1 ) ) e. CC ) |
30 |
24 29
|
mulcld |
|- ( ( ph /\ y e. CC ) -> ( ( N - M ) x. ( y ^ ( ( N - M ) - 1 ) ) ) e. CC ) |
31 |
|
lcmineqlem7 |
|- ( CC _D ( x e. CC |-> ( 1 - x ) ) ) = ( x e. CC |-> -u 1 ) |
32 |
31
|
a1i |
|- ( ph -> ( CC _D ( x e. CC |-> ( 1 - x ) ) ) = ( x e. CC |-> -u 1 ) ) |
33 |
|
dvexp |
|- ( ( N - M ) e. NN -> ( CC _D ( y e. CC |-> ( y ^ ( N - M ) ) ) ) = ( y e. CC |-> ( ( N - M ) x. ( y ^ ( ( N - M ) - 1 ) ) ) ) ) |
34 |
16 33
|
syl |
|- ( ph -> ( CC _D ( y e. CC |-> ( y ^ ( N - M ) ) ) ) = ( y e. CC |-> ( ( N - M ) x. ( y ^ ( ( N - M ) - 1 ) ) ) ) ) |
35 |
|
oveq1 |
|- ( y = ( 1 - x ) -> ( y ^ ( N - M ) ) = ( ( 1 - x ) ^ ( N - M ) ) ) |
36 |
|
oveq1 |
|- ( y = ( 1 - x ) -> ( y ^ ( ( N - M ) - 1 ) ) = ( ( 1 - x ) ^ ( ( N - M ) - 1 ) ) ) |
37 |
36
|
oveq2d |
|- ( y = ( 1 - x ) -> ( ( N - M ) x. ( y ^ ( ( N - M ) - 1 ) ) ) = ( ( N - M ) x. ( ( 1 - x ) ^ ( ( N - M ) - 1 ) ) ) ) |
38 |
5 5 8 10 19 30 32 34 35 37
|
dvmptco |
|- ( ph -> ( CC _D ( x e. CC |-> ( ( 1 - x ) ^ ( N - M ) ) ) ) = ( x e. CC |-> ( ( ( N - M ) x. ( ( 1 - x ) ^ ( ( N - M ) - 1 ) ) ) x. -u 1 ) ) ) |
39 |
20
|
adantr |
|- ( ( ph /\ x e. CC ) -> N e. CC ) |
40 |
22
|
adantr |
|- ( ( ph /\ x e. CC ) -> M e. CC ) |
41 |
39 40
|
subcld |
|- ( ( ph /\ x e. CC ) -> ( N - M ) e. CC ) |
42 |
|
ax-1cn |
|- 1 e. CC |
43 |
|
subcl |
|- ( ( 1 e. CC /\ x e. CC ) -> ( 1 - x ) e. CC ) |
44 |
42 43
|
mpan |
|- ( x e. CC -> ( 1 - x ) e. CC ) |
45 |
|
expcl |
|- ( ( ( 1 - x ) e. CC /\ ( ( N - M ) - 1 ) e. NN0 ) -> ( ( 1 - x ) ^ ( ( N - M ) - 1 ) ) e. CC ) |
46 |
44 26 45
|
syl2anr |
|- ( ( ph /\ x e. CC ) -> ( ( 1 - x ) ^ ( ( N - M ) - 1 ) ) e. CC ) |
47 |
41 46 10
|
mul32d |
|- ( ( ph /\ x e. CC ) -> ( ( ( N - M ) x. ( ( 1 - x ) ^ ( ( N - M ) - 1 ) ) ) x. -u 1 ) = ( ( ( N - M ) x. -u 1 ) x. ( ( 1 - x ) ^ ( ( N - M ) - 1 ) ) ) ) |
48 |
20 22
|
subcld |
|- ( ph -> ( N - M ) e. CC ) |
49 |
9
|
a1i |
|- ( ph -> -u 1 e. CC ) |
50 |
48 49
|
mulcomd |
|- ( ph -> ( ( N - M ) x. -u 1 ) = ( -u 1 x. ( N - M ) ) ) |
51 |
50
|
oveq1d |
|- ( ph -> ( ( ( N - M ) x. -u 1 ) x. ( ( 1 - x ) ^ ( ( N - M ) - 1 ) ) ) = ( ( -u 1 x. ( N - M ) ) x. ( ( 1 - x ) ^ ( ( N - M ) - 1 ) ) ) ) |
52 |
51
|
adantr |
|- ( ( ph /\ x e. CC ) -> ( ( ( N - M ) x. -u 1 ) x. ( ( 1 - x ) ^ ( ( N - M ) - 1 ) ) ) = ( ( -u 1 x. ( N - M ) ) x. ( ( 1 - x ) ^ ( ( N - M ) - 1 ) ) ) ) |
53 |
47 52
|
eqtrd |
|- ( ( ph /\ x e. CC ) -> ( ( ( N - M ) x. ( ( 1 - x ) ^ ( ( N - M ) - 1 ) ) ) x. -u 1 ) = ( ( -u 1 x. ( N - M ) ) x. ( ( 1 - x ) ^ ( ( N - M ) - 1 ) ) ) ) |
54 |
48
|
mulm1d |
|- ( ph -> ( -u 1 x. ( N - M ) ) = -u ( N - M ) ) |
55 |
54
|
adantr |
|- ( ( ph /\ x e. CC ) -> ( -u 1 x. ( N - M ) ) = -u ( N - M ) ) |
56 |
55
|
oveq1d |
|- ( ( ph /\ x e. CC ) -> ( ( -u 1 x. ( N - M ) ) x. ( ( 1 - x ) ^ ( ( N - M ) - 1 ) ) ) = ( -u ( N - M ) x. ( ( 1 - x ) ^ ( ( N - M ) - 1 ) ) ) ) |
57 |
53 56
|
eqtrd |
|- ( ( ph /\ x e. CC ) -> ( ( ( N - M ) x. ( ( 1 - x ) ^ ( ( N - M ) - 1 ) ) ) x. -u 1 ) = ( -u ( N - M ) x. ( ( 1 - x ) ^ ( ( N - M ) - 1 ) ) ) ) |
58 |
57
|
mpteq2dva |
|- ( ph -> ( x e. CC |-> ( ( ( N - M ) x. ( ( 1 - x ) ^ ( ( N - M ) - 1 ) ) ) x. -u 1 ) ) = ( x e. CC |-> ( -u ( N - M ) x. ( ( 1 - x ) ^ ( ( N - M ) - 1 ) ) ) ) ) |
59 |
38 58
|
eqtrd |
|- ( ph -> ( CC _D ( x e. CC |-> ( ( 1 - x ) ^ ( N - M ) ) ) ) = ( x e. CC |-> ( -u ( N - M ) x. ( ( 1 - x ) ^ ( ( N - M ) - 1 ) ) ) ) ) |