Step |
Hyp |
Ref |
Expression |
1 |
|
lcmineqlem17.1 |
|- ( ph -> N e. NN0 ) |
2 |
|
2nn0 |
|- 2 e. NN0 |
3 |
2
|
a1i |
|- ( ph -> 2 e. NN0 ) |
4 |
3 1
|
nn0mulcld |
|- ( ph -> ( 2 x. N ) e. NN0 ) |
5 |
|
binom11 |
|- ( ( 2 x. N ) e. NN0 -> ( 2 ^ ( 2 x. N ) ) = sum_ k e. ( 0 ... ( 2 x. N ) ) ( ( 2 x. N ) _C k ) ) |
6 |
4 5
|
syl |
|- ( ph -> ( 2 ^ ( 2 x. N ) ) = sum_ k e. ( 0 ... ( 2 x. N ) ) ( ( 2 x. N ) _C k ) ) |
7 |
|
fzfid |
|- ( ph -> ( 0 ... ( 2 x. N ) ) e. Fin ) |
8 |
4
|
adantr |
|- ( ( ph /\ k e. ( 0 ... ( 2 x. N ) ) ) -> ( 2 x. N ) e. NN0 ) |
9 |
|
elfzelz |
|- ( k e. ( 0 ... ( 2 x. N ) ) -> k e. ZZ ) |
10 |
9
|
adantl |
|- ( ( ph /\ k e. ( 0 ... ( 2 x. N ) ) ) -> k e. ZZ ) |
11 |
8 10
|
jca |
|- ( ( ph /\ k e. ( 0 ... ( 2 x. N ) ) ) -> ( ( 2 x. N ) e. NN0 /\ k e. ZZ ) ) |
12 |
|
bccl |
|- ( ( ( 2 x. N ) e. NN0 /\ k e. ZZ ) -> ( ( 2 x. N ) _C k ) e. NN0 ) |
13 |
11 12
|
syl |
|- ( ( ph /\ k e. ( 0 ... ( 2 x. N ) ) ) -> ( ( 2 x. N ) _C k ) e. NN0 ) |
14 |
13
|
nn0red |
|- ( ( ph /\ k e. ( 0 ... ( 2 x. N ) ) ) -> ( ( 2 x. N ) _C k ) e. RR ) |
15 |
1
|
nn0zd |
|- ( ph -> N e. ZZ ) |
16 |
|
bccl |
|- ( ( ( 2 x. N ) e. NN0 /\ N e. ZZ ) -> ( ( 2 x. N ) _C N ) e. NN0 ) |
17 |
4 15 16
|
syl2anc |
|- ( ph -> ( ( 2 x. N ) _C N ) e. NN0 ) |
18 |
17
|
nn0red |
|- ( ph -> ( ( 2 x. N ) _C N ) e. RR ) |
19 |
18
|
adantr |
|- ( ( ph /\ k e. ( 0 ... ( 2 x. N ) ) ) -> ( ( 2 x. N ) _C N ) e. RR ) |
20 |
|
bcmax |
|- ( ( N e. NN0 /\ k e. ZZ ) -> ( ( 2 x. N ) _C k ) <_ ( ( 2 x. N ) _C N ) ) |
21 |
1 9 20
|
syl2an |
|- ( ( ph /\ k e. ( 0 ... ( 2 x. N ) ) ) -> ( ( 2 x. N ) _C k ) <_ ( ( 2 x. N ) _C N ) ) |
22 |
7 14 19 21
|
fsumle |
|- ( ph -> sum_ k e. ( 0 ... ( 2 x. N ) ) ( ( 2 x. N ) _C k ) <_ sum_ k e. ( 0 ... ( 2 x. N ) ) ( ( 2 x. N ) _C N ) ) |
23 |
6 22
|
eqbrtrd |
|- ( ph -> ( 2 ^ ( 2 x. N ) ) <_ sum_ k e. ( 0 ... ( 2 x. N ) ) ( ( 2 x. N ) _C N ) ) |
24 |
17
|
nn0cnd |
|- ( ph -> ( ( 2 x. N ) _C N ) e. CC ) |
25 |
|
fsumconst |
|- ( ( ( 0 ... ( 2 x. N ) ) e. Fin /\ ( ( 2 x. N ) _C N ) e. CC ) -> sum_ k e. ( 0 ... ( 2 x. N ) ) ( ( 2 x. N ) _C N ) = ( ( # ` ( 0 ... ( 2 x. N ) ) ) x. ( ( 2 x. N ) _C N ) ) ) |
26 |
7 24 25
|
syl2anc |
|- ( ph -> sum_ k e. ( 0 ... ( 2 x. N ) ) ( ( 2 x. N ) _C N ) = ( ( # ` ( 0 ... ( 2 x. N ) ) ) x. ( ( 2 x. N ) _C N ) ) ) |
27 |
|
hashfz0 |
|- ( ( 2 x. N ) e. NN0 -> ( # ` ( 0 ... ( 2 x. N ) ) ) = ( ( 2 x. N ) + 1 ) ) |
28 |
4 27
|
syl |
|- ( ph -> ( # ` ( 0 ... ( 2 x. N ) ) ) = ( ( 2 x. N ) + 1 ) ) |
29 |
28
|
oveq1d |
|- ( ph -> ( ( # ` ( 0 ... ( 2 x. N ) ) ) x. ( ( 2 x. N ) _C N ) ) = ( ( ( 2 x. N ) + 1 ) x. ( ( 2 x. N ) _C N ) ) ) |
30 |
26 29
|
eqtrd |
|- ( ph -> sum_ k e. ( 0 ... ( 2 x. N ) ) ( ( 2 x. N ) _C N ) = ( ( ( 2 x. N ) + 1 ) x. ( ( 2 x. N ) _C N ) ) ) |
31 |
23 30
|
breqtrd |
|- ( ph -> ( 2 ^ ( 2 x. N ) ) <_ ( ( ( 2 x. N ) + 1 ) x. ( ( 2 x. N ) _C N ) ) ) |