Step |
Hyp |
Ref |
Expression |
1 |
|
lcmineqlem18.1 |
|- ( ph -> N e. NN ) |
2 |
|
0zd |
|- ( ph -> 0 e. ZZ ) |
3 |
|
2z |
|- 2 e. ZZ |
4 |
3
|
a1i |
|- ( ph -> 2 e. ZZ ) |
5 |
1
|
nnzd |
|- ( ph -> N e. ZZ ) |
6 |
4 5
|
zmulcld |
|- ( ph -> ( 2 x. N ) e. ZZ ) |
7 |
6
|
peano2zd |
|- ( ph -> ( ( 2 x. N ) + 1 ) e. ZZ ) |
8 |
5
|
peano2zd |
|- ( ph -> ( N + 1 ) e. ZZ ) |
9 |
1
|
nnred |
|- ( ph -> N e. RR ) |
10 |
|
1red |
|- ( ph -> 1 e. RR ) |
11 |
1
|
nnnn0d |
|- ( ph -> N e. NN0 ) |
12 |
11
|
nn0ge0d |
|- ( ph -> 0 <_ N ) |
13 |
|
0le1 |
|- 0 <_ 1 |
14 |
13
|
a1i |
|- ( ph -> 0 <_ 1 ) |
15 |
9 10 12 14
|
addge0d |
|- ( ph -> 0 <_ ( N + 1 ) ) |
16 |
9 10
|
readdcld |
|- ( ph -> ( N + 1 ) e. RR ) |
17 |
16 9
|
addge01d |
|- ( ph -> ( 0 <_ N <-> ( N + 1 ) <_ ( ( N + 1 ) + N ) ) ) |
18 |
12 17
|
mpbid |
|- ( ph -> ( N + 1 ) <_ ( ( N + 1 ) + N ) ) |
19 |
9
|
recnd |
|- ( ph -> N e. CC ) |
20 |
|
1cnd |
|- ( ph -> 1 e. CC ) |
21 |
19 20 19
|
add32d |
|- ( ph -> ( ( N + 1 ) + N ) = ( ( N + N ) + 1 ) ) |
22 |
19
|
2timesd |
|- ( ph -> ( 2 x. N ) = ( N + N ) ) |
23 |
22
|
oveq1d |
|- ( ph -> ( ( 2 x. N ) + 1 ) = ( ( N + N ) + 1 ) ) |
24 |
23
|
eqcomd |
|- ( ph -> ( ( N + N ) + 1 ) = ( ( 2 x. N ) + 1 ) ) |
25 |
21 24
|
eqtrd |
|- ( ph -> ( ( N + 1 ) + N ) = ( ( 2 x. N ) + 1 ) ) |
26 |
18 25
|
breqtrd |
|- ( ph -> ( N + 1 ) <_ ( ( 2 x. N ) + 1 ) ) |
27 |
2 7 8 15 26
|
elfzd |
|- ( ph -> ( N + 1 ) e. ( 0 ... ( ( 2 x. N ) + 1 ) ) ) |
28 |
|
bcval2 |
|- ( ( N + 1 ) e. ( 0 ... ( ( 2 x. N ) + 1 ) ) -> ( ( ( 2 x. N ) + 1 ) _C ( N + 1 ) ) = ( ( ! ` ( ( 2 x. N ) + 1 ) ) / ( ( ! ` ( ( ( 2 x. N ) + 1 ) - ( N + 1 ) ) ) x. ( ! ` ( N + 1 ) ) ) ) ) |
29 |
27 28
|
syl |
|- ( ph -> ( ( ( 2 x. N ) + 1 ) _C ( N + 1 ) ) = ( ( ! ` ( ( 2 x. N ) + 1 ) ) / ( ( ! ` ( ( ( 2 x. N ) + 1 ) - ( N + 1 ) ) ) x. ( ! ` ( N + 1 ) ) ) ) ) |
30 |
6
|
zcnd |
|- ( ph -> ( 2 x. N ) e. CC ) |
31 |
30 20 19 20
|
addsub4d |
|- ( ph -> ( ( ( 2 x. N ) + 1 ) - ( N + 1 ) ) = ( ( ( 2 x. N ) - N ) + ( 1 - 1 ) ) ) |
32 |
22
|
oveq1d |
|- ( ph -> ( ( 2 x. N ) - N ) = ( ( N + N ) - N ) ) |
33 |
19 19
|
pncand |
|- ( ph -> ( ( N + N ) - N ) = N ) |
34 |
32 33
|
eqtrd |
|- ( ph -> ( ( 2 x. N ) - N ) = N ) |
35 |
|
1m1e0 |
|- ( 1 - 1 ) = 0 |
36 |
35
|
a1i |
|- ( ph -> ( 1 - 1 ) = 0 ) |
37 |
34 36
|
oveq12d |
|- ( ph -> ( ( ( 2 x. N ) - N ) + ( 1 - 1 ) ) = ( N + 0 ) ) |
38 |
19
|
addid1d |
|- ( ph -> ( N + 0 ) = N ) |
39 |
37 38
|
eqtrd |
|- ( ph -> ( ( ( 2 x. N ) - N ) + ( 1 - 1 ) ) = N ) |
40 |
31 39
|
eqtrd |
|- ( ph -> ( ( ( 2 x. N ) + 1 ) - ( N + 1 ) ) = N ) |
41 |
40
|
fveq2d |
|- ( ph -> ( ! ` ( ( ( 2 x. N ) + 1 ) - ( N + 1 ) ) ) = ( ! ` N ) ) |
42 |
41
|
oveq1d |
|- ( ph -> ( ( ! ` ( ( ( 2 x. N ) + 1 ) - ( N + 1 ) ) ) x. ( ! ` ( N + 1 ) ) ) = ( ( ! ` N ) x. ( ! ` ( N + 1 ) ) ) ) |
43 |
42
|
oveq2d |
|- ( ph -> ( ( ! ` ( ( 2 x. N ) + 1 ) ) / ( ( ! ` ( ( ( 2 x. N ) + 1 ) - ( N + 1 ) ) ) x. ( ! ` ( N + 1 ) ) ) ) = ( ( ! ` ( ( 2 x. N ) + 1 ) ) / ( ( ! ` N ) x. ( ! ` ( N + 1 ) ) ) ) ) |
44 |
29 43
|
eqtrd |
|- ( ph -> ( ( ( 2 x. N ) + 1 ) _C ( N + 1 ) ) = ( ( ! ` ( ( 2 x. N ) + 1 ) ) / ( ( ! ` N ) x. ( ! ` ( N + 1 ) ) ) ) ) |
45 |
|
faccl |
|- ( N e. NN0 -> ( ! ` N ) e. NN ) |
46 |
11 45
|
syl |
|- ( ph -> ( ! ` N ) e. NN ) |
47 |
46
|
nncnd |
|- ( ph -> ( ! ` N ) e. CC ) |
48 |
|
1nn0 |
|- 1 e. NN0 |
49 |
48
|
a1i |
|- ( ph -> 1 e. NN0 ) |
50 |
11 49
|
nn0addcld |
|- ( ph -> ( N + 1 ) e. NN0 ) |
51 |
|
faccl |
|- ( ( N + 1 ) e. NN0 -> ( ! ` ( N + 1 ) ) e. NN ) |
52 |
50 51
|
syl |
|- ( ph -> ( ! ` ( N + 1 ) ) e. NN ) |
53 |
52
|
nncnd |
|- ( ph -> ( ! ` ( N + 1 ) ) e. CC ) |
54 |
47 53
|
mulcomd |
|- ( ph -> ( ( ! ` N ) x. ( ! ` ( N + 1 ) ) ) = ( ( ! ` ( N + 1 ) ) x. ( ! ` N ) ) ) |
55 |
|
facp1 |
|- ( N e. NN0 -> ( ! ` ( N + 1 ) ) = ( ( ! ` N ) x. ( N + 1 ) ) ) |
56 |
11 55
|
syl |
|- ( ph -> ( ! ` ( N + 1 ) ) = ( ( ! ` N ) x. ( N + 1 ) ) ) |
57 |
19 20
|
addcld |
|- ( ph -> ( N + 1 ) e. CC ) |
58 |
47 57
|
mulcomd |
|- ( ph -> ( ( ! ` N ) x. ( N + 1 ) ) = ( ( N + 1 ) x. ( ! ` N ) ) ) |
59 |
56 58
|
eqtrd |
|- ( ph -> ( ! ` ( N + 1 ) ) = ( ( N + 1 ) x. ( ! ` N ) ) ) |
60 |
59
|
oveq1d |
|- ( ph -> ( ( ! ` ( N + 1 ) ) x. ( ! ` N ) ) = ( ( ( N + 1 ) x. ( ! ` N ) ) x. ( ! ` N ) ) ) |
61 |
57 47 47
|
mulassd |
|- ( ph -> ( ( ( N + 1 ) x. ( ! ` N ) ) x. ( ! ` N ) ) = ( ( N + 1 ) x. ( ( ! ` N ) x. ( ! ` N ) ) ) ) |
62 |
60 61
|
eqtrd |
|- ( ph -> ( ( ! ` ( N + 1 ) ) x. ( ! ` N ) ) = ( ( N + 1 ) x. ( ( ! ` N ) x. ( ! ` N ) ) ) ) |
63 |
54 62
|
eqtrd |
|- ( ph -> ( ( ! ` N ) x. ( ! ` ( N + 1 ) ) ) = ( ( N + 1 ) x. ( ( ! ` N ) x. ( ! ` N ) ) ) ) |
64 |
63
|
oveq2d |
|- ( ph -> ( ( ! ` ( ( 2 x. N ) + 1 ) ) / ( ( ! ` N ) x. ( ! ` ( N + 1 ) ) ) ) = ( ( ! ` ( ( 2 x. N ) + 1 ) ) / ( ( N + 1 ) x. ( ( ! ` N ) x. ( ! ` N ) ) ) ) ) |
65 |
44 64
|
eqtrd |
|- ( ph -> ( ( ( 2 x. N ) + 1 ) _C ( N + 1 ) ) = ( ( ! ` ( ( 2 x. N ) + 1 ) ) / ( ( N + 1 ) x. ( ( ! ` N ) x. ( ! ` N ) ) ) ) ) |
66 |
|
2nn0 |
|- 2 e. NN0 |
67 |
66
|
a1i |
|- ( ph -> 2 e. NN0 ) |
68 |
67 11
|
nn0mulcld |
|- ( ph -> ( 2 x. N ) e. NN0 ) |
69 |
|
facp1 |
|- ( ( 2 x. N ) e. NN0 -> ( ! ` ( ( 2 x. N ) + 1 ) ) = ( ( ! ` ( 2 x. N ) ) x. ( ( 2 x. N ) + 1 ) ) ) |
70 |
68 69
|
syl |
|- ( ph -> ( ! ` ( ( 2 x. N ) + 1 ) ) = ( ( ! ` ( 2 x. N ) ) x. ( ( 2 x. N ) + 1 ) ) ) |
71 |
|
faccl |
|- ( ( 2 x. N ) e. NN0 -> ( ! ` ( 2 x. N ) ) e. NN ) |
72 |
68 71
|
syl |
|- ( ph -> ( ! ` ( 2 x. N ) ) e. NN ) |
73 |
72
|
nncnd |
|- ( ph -> ( ! ` ( 2 x. N ) ) e. CC ) |
74 |
30 20
|
addcld |
|- ( ph -> ( ( 2 x. N ) + 1 ) e. CC ) |
75 |
73 74
|
mulcomd |
|- ( ph -> ( ( ! ` ( 2 x. N ) ) x. ( ( 2 x. N ) + 1 ) ) = ( ( ( 2 x. N ) + 1 ) x. ( ! ` ( 2 x. N ) ) ) ) |
76 |
70 75
|
eqtrd |
|- ( ph -> ( ! ` ( ( 2 x. N ) + 1 ) ) = ( ( ( 2 x. N ) + 1 ) x. ( ! ` ( 2 x. N ) ) ) ) |
77 |
76
|
oveq1d |
|- ( ph -> ( ( ! ` ( ( 2 x. N ) + 1 ) ) / ( ( N + 1 ) x. ( ( ! ` N ) x. ( ! ` N ) ) ) ) = ( ( ( ( 2 x. N ) + 1 ) x. ( ! ` ( 2 x. N ) ) ) / ( ( N + 1 ) x. ( ( ! ` N ) x. ( ! ` N ) ) ) ) ) |
78 |
65 77
|
eqtrd |
|- ( ph -> ( ( ( 2 x. N ) + 1 ) _C ( N + 1 ) ) = ( ( ( ( 2 x. N ) + 1 ) x. ( ! ` ( 2 x. N ) ) ) / ( ( N + 1 ) x. ( ( ! ` N ) x. ( ! ` N ) ) ) ) ) |
79 |
78
|
oveq2d |
|- ( ph -> ( ( N + 1 ) x. ( ( ( 2 x. N ) + 1 ) _C ( N + 1 ) ) ) = ( ( N + 1 ) x. ( ( ( ( 2 x. N ) + 1 ) x. ( ! ` ( 2 x. N ) ) ) / ( ( N + 1 ) x. ( ( ! ` N ) x. ( ! ` N ) ) ) ) ) ) |
80 |
74 73
|
mulcld |
|- ( ph -> ( ( ( 2 x. N ) + 1 ) x. ( ! ` ( 2 x. N ) ) ) e. CC ) |
81 |
47 47
|
mulcld |
|- ( ph -> ( ( ! ` N ) x. ( ! ` N ) ) e. CC ) |
82 |
57 81
|
mulcld |
|- ( ph -> ( ( N + 1 ) x. ( ( ! ` N ) x. ( ! ` N ) ) ) e. CC ) |
83 |
1
|
peano2nnd |
|- ( ph -> ( N + 1 ) e. NN ) |
84 |
83
|
nnne0d |
|- ( ph -> ( N + 1 ) =/= 0 ) |
85 |
46
|
nnne0d |
|- ( ph -> ( ! ` N ) =/= 0 ) |
86 |
47 47 85 85
|
mulne0d |
|- ( ph -> ( ( ! ` N ) x. ( ! ` N ) ) =/= 0 ) |
87 |
57 81 84 86
|
mulne0d |
|- ( ph -> ( ( N + 1 ) x. ( ( ! ` N ) x. ( ! ` N ) ) ) =/= 0 ) |
88 |
57 80 82 87
|
divassd |
|- ( ph -> ( ( ( N + 1 ) x. ( ( ( 2 x. N ) + 1 ) x. ( ! ` ( 2 x. N ) ) ) ) / ( ( N + 1 ) x. ( ( ! ` N ) x. ( ! ` N ) ) ) ) = ( ( N + 1 ) x. ( ( ( ( 2 x. N ) + 1 ) x. ( ! ` ( 2 x. N ) ) ) / ( ( N + 1 ) x. ( ( ! ` N ) x. ( ! ` N ) ) ) ) ) ) |
89 |
88
|
eqcomd |
|- ( ph -> ( ( N + 1 ) x. ( ( ( ( 2 x. N ) + 1 ) x. ( ! ` ( 2 x. N ) ) ) / ( ( N + 1 ) x. ( ( ! ` N ) x. ( ! ` N ) ) ) ) ) = ( ( ( N + 1 ) x. ( ( ( 2 x. N ) + 1 ) x. ( ! ` ( 2 x. N ) ) ) ) / ( ( N + 1 ) x. ( ( ! ` N ) x. ( ! ` N ) ) ) ) ) |
90 |
79 89
|
eqtrd |
|- ( ph -> ( ( N + 1 ) x. ( ( ( 2 x. N ) + 1 ) _C ( N + 1 ) ) ) = ( ( ( N + 1 ) x. ( ( ( 2 x. N ) + 1 ) x. ( ! ` ( 2 x. N ) ) ) ) / ( ( N + 1 ) x. ( ( ! ` N ) x. ( ! ` N ) ) ) ) ) |
91 |
57 57 80 81 84 86
|
divmuldivd |
|- ( ph -> ( ( ( N + 1 ) / ( N + 1 ) ) x. ( ( ( ( 2 x. N ) + 1 ) x. ( ! ` ( 2 x. N ) ) ) / ( ( ! ` N ) x. ( ! ` N ) ) ) ) = ( ( ( N + 1 ) x. ( ( ( 2 x. N ) + 1 ) x. ( ! ` ( 2 x. N ) ) ) ) / ( ( N + 1 ) x. ( ( ! ` N ) x. ( ! ` N ) ) ) ) ) |
92 |
91
|
eqcomd |
|- ( ph -> ( ( ( N + 1 ) x. ( ( ( 2 x. N ) + 1 ) x. ( ! ` ( 2 x. N ) ) ) ) / ( ( N + 1 ) x. ( ( ! ` N ) x. ( ! ` N ) ) ) ) = ( ( ( N + 1 ) / ( N + 1 ) ) x. ( ( ( ( 2 x. N ) + 1 ) x. ( ! ` ( 2 x. N ) ) ) / ( ( ! ` N ) x. ( ! ` N ) ) ) ) ) |
93 |
90 92
|
eqtrd |
|- ( ph -> ( ( N + 1 ) x. ( ( ( 2 x. N ) + 1 ) _C ( N + 1 ) ) ) = ( ( ( N + 1 ) / ( N + 1 ) ) x. ( ( ( ( 2 x. N ) + 1 ) x. ( ! ` ( 2 x. N ) ) ) / ( ( ! ` N ) x. ( ! ` N ) ) ) ) ) |
94 |
57 84
|
dividd |
|- ( ph -> ( ( N + 1 ) / ( N + 1 ) ) = 1 ) |
95 |
94
|
oveq1d |
|- ( ph -> ( ( ( N + 1 ) / ( N + 1 ) ) x. ( ( ( ( 2 x. N ) + 1 ) x. ( ! ` ( 2 x. N ) ) ) / ( ( ! ` N ) x. ( ! ` N ) ) ) ) = ( 1 x. ( ( ( ( 2 x. N ) + 1 ) x. ( ! ` ( 2 x. N ) ) ) / ( ( ! ` N ) x. ( ! ` N ) ) ) ) ) |
96 |
80 81 86
|
divcld |
|- ( ph -> ( ( ( ( 2 x. N ) + 1 ) x. ( ! ` ( 2 x. N ) ) ) / ( ( ! ` N ) x. ( ! ` N ) ) ) e. CC ) |
97 |
96
|
mulid2d |
|- ( ph -> ( 1 x. ( ( ( ( 2 x. N ) + 1 ) x. ( ! ` ( 2 x. N ) ) ) / ( ( ! ` N ) x. ( ! ` N ) ) ) ) = ( ( ( ( 2 x. N ) + 1 ) x. ( ! ` ( 2 x. N ) ) ) / ( ( ! ` N ) x. ( ! ` N ) ) ) ) |
98 |
95 97
|
eqtrd |
|- ( ph -> ( ( ( N + 1 ) / ( N + 1 ) ) x. ( ( ( ( 2 x. N ) + 1 ) x. ( ! ` ( 2 x. N ) ) ) / ( ( ! ` N ) x. ( ! ` N ) ) ) ) = ( ( ( ( 2 x. N ) + 1 ) x. ( ! ` ( 2 x. N ) ) ) / ( ( ! ` N ) x. ( ! ` N ) ) ) ) |
99 |
93 98
|
eqtrd |
|- ( ph -> ( ( N + 1 ) x. ( ( ( 2 x. N ) + 1 ) _C ( N + 1 ) ) ) = ( ( ( ( 2 x. N ) + 1 ) x. ( ! ` ( 2 x. N ) ) ) / ( ( ! ` N ) x. ( ! ` N ) ) ) ) |
100 |
74 73 81 86
|
divassd |
|- ( ph -> ( ( ( ( 2 x. N ) + 1 ) x. ( ! ` ( 2 x. N ) ) ) / ( ( ! ` N ) x. ( ! ` N ) ) ) = ( ( ( 2 x. N ) + 1 ) x. ( ( ! ` ( 2 x. N ) ) / ( ( ! ` N ) x. ( ! ` N ) ) ) ) ) |
101 |
99 100
|
eqtrd |
|- ( ph -> ( ( N + 1 ) x. ( ( ( 2 x. N ) + 1 ) _C ( N + 1 ) ) ) = ( ( ( 2 x. N ) + 1 ) x. ( ( ! ` ( 2 x. N ) ) / ( ( ! ` N ) x. ( ! ` N ) ) ) ) ) |
102 |
9 9
|
addge01d |
|- ( ph -> ( 0 <_ N <-> N <_ ( N + N ) ) ) |
103 |
22
|
breq2d |
|- ( ph -> ( N <_ ( 2 x. N ) <-> N <_ ( N + N ) ) ) |
104 |
102 103
|
bitr4d |
|- ( ph -> ( 0 <_ N <-> N <_ ( 2 x. N ) ) ) |
105 |
12 104
|
mpbid |
|- ( ph -> N <_ ( 2 x. N ) ) |
106 |
2 6 5 12 105
|
elfzd |
|- ( ph -> N e. ( 0 ... ( 2 x. N ) ) ) |
107 |
|
bcval2 |
|- ( N e. ( 0 ... ( 2 x. N ) ) -> ( ( 2 x. N ) _C N ) = ( ( ! ` ( 2 x. N ) ) / ( ( ! ` ( ( 2 x. N ) - N ) ) x. ( ! ` N ) ) ) ) |
108 |
106 107
|
syl |
|- ( ph -> ( ( 2 x. N ) _C N ) = ( ( ! ` ( 2 x. N ) ) / ( ( ! ` ( ( 2 x. N ) - N ) ) x. ( ! ` N ) ) ) ) |
109 |
34
|
fveq2d |
|- ( ph -> ( ! ` ( ( 2 x. N ) - N ) ) = ( ! ` N ) ) |
110 |
109
|
oveq1d |
|- ( ph -> ( ( ! ` ( ( 2 x. N ) - N ) ) x. ( ! ` N ) ) = ( ( ! ` N ) x. ( ! ` N ) ) ) |
111 |
110
|
oveq2d |
|- ( ph -> ( ( ! ` ( 2 x. N ) ) / ( ( ! ` ( ( 2 x. N ) - N ) ) x. ( ! ` N ) ) ) = ( ( ! ` ( 2 x. N ) ) / ( ( ! ` N ) x. ( ! ` N ) ) ) ) |
112 |
108 111
|
eqtrd |
|- ( ph -> ( ( 2 x. N ) _C N ) = ( ( ! ` ( 2 x. N ) ) / ( ( ! ` N ) x. ( ! ` N ) ) ) ) |
113 |
112
|
oveq2d |
|- ( ph -> ( ( ( 2 x. N ) + 1 ) x. ( ( 2 x. N ) _C N ) ) = ( ( ( 2 x. N ) + 1 ) x. ( ( ! ` ( 2 x. N ) ) / ( ( ! ` N ) x. ( ! ` N ) ) ) ) ) |
114 |
113
|
eqcomd |
|- ( ph -> ( ( ( 2 x. N ) + 1 ) x. ( ( ! ` ( 2 x. N ) ) / ( ( ! ` N ) x. ( ! ` N ) ) ) ) = ( ( ( 2 x. N ) + 1 ) x. ( ( 2 x. N ) _C N ) ) ) |
115 |
101 114
|
eqtrd |
|- ( ph -> ( ( N + 1 ) x. ( ( ( 2 x. N ) + 1 ) _C ( N + 1 ) ) ) = ( ( ( 2 x. N ) + 1 ) x. ( ( 2 x. N ) _C N ) ) ) |