Step |
Hyp |
Ref |
Expression |
1 |
|
lcmineqlem19.1 |
|- ( ph -> N e. NN ) |
2 |
|
2nn |
|- 2 e. NN |
3 |
2
|
a1i |
|- ( ph -> 2 e. NN ) |
4 |
3 1
|
nnmulcld |
|- ( ph -> ( 2 x. N ) e. NN ) |
5 |
4
|
peano2nnd |
|- ( ph -> ( ( 2 x. N ) + 1 ) e. NN ) |
6 |
1
|
nnnn0d |
|- ( ph -> N e. NN0 ) |
7 |
1
|
nnred |
|- ( ph -> N e. RR ) |
8 |
|
2re |
|- 2 e. RR |
9 |
8
|
a1i |
|- ( ph -> 2 e. RR ) |
10 |
6
|
nn0ge0d |
|- ( ph -> 0 <_ N ) |
11 |
3
|
nnge1d |
|- ( ph -> 1 <_ 2 ) |
12 |
7 9 10 11
|
lemulge12d |
|- ( ph -> N <_ ( 2 x. N ) ) |
13 |
4 6 12
|
bccl2d |
|- ( ph -> ( ( 2 x. N ) _C N ) e. NN ) |
14 |
|
fz1ssnn |
|- ( 1 ... ( 2 x. N ) ) C_ NN |
15 |
|
fzfi |
|- ( 1 ... ( 2 x. N ) ) e. Fin |
16 |
|
lcmfnncl |
|- ( ( ( 1 ... ( 2 x. N ) ) C_ NN /\ ( 1 ... ( 2 x. N ) ) e. Fin ) -> ( _lcm ` ( 1 ... ( 2 x. N ) ) ) e. NN ) |
17 |
14 15 16
|
mp2an |
|- ( _lcm ` ( 1 ... ( 2 x. N ) ) ) e. NN |
18 |
17
|
a1i |
|- ( ph -> ( _lcm ` ( 1 ... ( 2 x. N ) ) ) e. NN ) |
19 |
|
fz1ssnn |
|- ( 1 ... ( ( 2 x. N ) + 1 ) ) C_ NN |
20 |
|
fzfi |
|- ( 1 ... ( ( 2 x. N ) + 1 ) ) e. Fin |
21 |
|
lcmfnncl |
|- ( ( ( 1 ... ( ( 2 x. N ) + 1 ) ) C_ NN /\ ( 1 ... ( ( 2 x. N ) + 1 ) ) e. Fin ) -> ( _lcm ` ( 1 ... ( ( 2 x. N ) + 1 ) ) ) e. NN ) |
22 |
19 20 21
|
mp2an |
|- ( _lcm ` ( 1 ... ( ( 2 x. N ) + 1 ) ) ) e. NN |
23 |
22
|
a1i |
|- ( ph -> ( _lcm ` ( 1 ... ( ( 2 x. N ) + 1 ) ) ) e. NN ) |
24 |
1 4 12
|
lcmineqlem16 |
|- ( ph -> ( N x. ( ( 2 x. N ) _C N ) ) || ( _lcm ` ( 1 ... ( 2 x. N ) ) ) ) |
25 |
1
|
lcmineqlem18 |
|- ( ph -> ( ( N + 1 ) x. ( ( ( 2 x. N ) + 1 ) _C ( N + 1 ) ) ) = ( ( ( 2 x. N ) + 1 ) x. ( ( 2 x. N ) _C N ) ) ) |
26 |
1
|
peano2nnd |
|- ( ph -> ( N + 1 ) e. NN ) |
27 |
9 7
|
remulcld |
|- ( ph -> ( 2 x. N ) e. RR ) |
28 |
|
1red |
|- ( ph -> 1 e. RR ) |
29 |
7 27 28 12
|
leadd1dd |
|- ( ph -> ( N + 1 ) <_ ( ( 2 x. N ) + 1 ) ) |
30 |
26 5 29
|
lcmineqlem16 |
|- ( ph -> ( ( N + 1 ) x. ( ( ( 2 x. N ) + 1 ) _C ( N + 1 ) ) ) || ( _lcm ` ( 1 ... ( ( 2 x. N ) + 1 ) ) ) ) |
31 |
25 30
|
eqbrtrrd |
|- ( ph -> ( ( ( 2 x. N ) + 1 ) x. ( ( 2 x. N ) _C N ) ) || ( _lcm ` ( 1 ... ( ( 2 x. N ) + 1 ) ) ) ) |
32 |
18
|
nnzd |
|- ( ph -> ( _lcm ` ( 1 ... ( 2 x. N ) ) ) e. ZZ ) |
33 |
5
|
nnzd |
|- ( ph -> ( ( 2 x. N ) + 1 ) e. ZZ ) |
34 |
32 33
|
jca |
|- ( ph -> ( ( _lcm ` ( 1 ... ( 2 x. N ) ) ) e. ZZ /\ ( ( 2 x. N ) + 1 ) e. ZZ ) ) |
35 |
|
dvdslcm |
|- ( ( ( _lcm ` ( 1 ... ( 2 x. N ) ) ) e. ZZ /\ ( ( 2 x. N ) + 1 ) e. ZZ ) -> ( ( _lcm ` ( 1 ... ( 2 x. N ) ) ) || ( ( _lcm ` ( 1 ... ( 2 x. N ) ) ) lcm ( ( 2 x. N ) + 1 ) ) /\ ( ( 2 x. N ) + 1 ) || ( ( _lcm ` ( 1 ... ( 2 x. N ) ) ) lcm ( ( 2 x. N ) + 1 ) ) ) ) |
36 |
34 35
|
syl |
|- ( ph -> ( ( _lcm ` ( 1 ... ( 2 x. N ) ) ) || ( ( _lcm ` ( 1 ... ( 2 x. N ) ) ) lcm ( ( 2 x. N ) + 1 ) ) /\ ( ( 2 x. N ) + 1 ) || ( ( _lcm ` ( 1 ... ( 2 x. N ) ) ) lcm ( ( 2 x. N ) + 1 ) ) ) ) |
37 |
36
|
simpld |
|- ( ph -> ( _lcm ` ( 1 ... ( 2 x. N ) ) ) || ( ( _lcm ` ( 1 ... ( 2 x. N ) ) ) lcm ( ( 2 x. N ) + 1 ) ) ) |
38 |
5
|
lcmfunnnd |
|- ( ph -> ( _lcm ` ( 1 ... ( ( 2 x. N ) + 1 ) ) ) = ( ( _lcm ` ( 1 ... ( ( ( 2 x. N ) + 1 ) - 1 ) ) ) lcm ( ( 2 x. N ) + 1 ) ) ) |
39 |
27
|
recnd |
|- ( ph -> ( 2 x. N ) e. CC ) |
40 |
|
1cnd |
|- ( ph -> 1 e. CC ) |
41 |
39 40
|
pncand |
|- ( ph -> ( ( ( 2 x. N ) + 1 ) - 1 ) = ( 2 x. N ) ) |
42 |
41
|
oveq2d |
|- ( ph -> ( 1 ... ( ( ( 2 x. N ) + 1 ) - 1 ) ) = ( 1 ... ( 2 x. N ) ) ) |
43 |
42
|
fveq2d |
|- ( ph -> ( _lcm ` ( 1 ... ( ( ( 2 x. N ) + 1 ) - 1 ) ) ) = ( _lcm ` ( 1 ... ( 2 x. N ) ) ) ) |
44 |
43
|
oveq1d |
|- ( ph -> ( ( _lcm ` ( 1 ... ( ( ( 2 x. N ) + 1 ) - 1 ) ) ) lcm ( ( 2 x. N ) + 1 ) ) = ( ( _lcm ` ( 1 ... ( 2 x. N ) ) ) lcm ( ( 2 x. N ) + 1 ) ) ) |
45 |
38 44
|
eqtrd |
|- ( ph -> ( _lcm ` ( 1 ... ( ( 2 x. N ) + 1 ) ) ) = ( ( _lcm ` ( 1 ... ( 2 x. N ) ) ) lcm ( ( 2 x. N ) + 1 ) ) ) |
46 |
37 45
|
breqtrrd |
|- ( ph -> ( _lcm ` ( 1 ... ( 2 x. N ) ) ) || ( _lcm ` ( 1 ... ( ( 2 x. N ) + 1 ) ) ) ) |
47 |
1
|
nnzd |
|- ( ph -> N e. ZZ ) |
48 |
|
2z |
|- 2 e. ZZ |
49 |
|
1z |
|- 1 e. ZZ |
50 |
|
gcdaddm |
|- ( ( 2 e. ZZ /\ N e. ZZ /\ 1 e. ZZ ) -> ( N gcd 1 ) = ( N gcd ( 1 + ( 2 x. N ) ) ) ) |
51 |
48 49 50
|
mp3an13 |
|- ( N e. ZZ -> ( N gcd 1 ) = ( N gcd ( 1 + ( 2 x. N ) ) ) ) |
52 |
47 51
|
syl |
|- ( ph -> ( N gcd 1 ) = ( N gcd ( 1 + ( 2 x. N ) ) ) ) |
53 |
40 39
|
addcomd |
|- ( ph -> ( 1 + ( 2 x. N ) ) = ( ( 2 x. N ) + 1 ) ) |
54 |
53
|
oveq2d |
|- ( ph -> ( N gcd ( 1 + ( 2 x. N ) ) ) = ( N gcd ( ( 2 x. N ) + 1 ) ) ) |
55 |
52 54
|
eqtrd |
|- ( ph -> ( N gcd 1 ) = ( N gcd ( ( 2 x. N ) + 1 ) ) ) |
56 |
|
gcd1 |
|- ( N e. ZZ -> ( N gcd 1 ) = 1 ) |
57 |
47 56
|
syl |
|- ( ph -> ( N gcd 1 ) = 1 ) |
58 |
55 57
|
eqtr3d |
|- ( ph -> ( N gcd ( ( 2 x. N ) + 1 ) ) = 1 ) |
59 |
1 5 13 18 23 24 31 46 58
|
lcmineqlem14 |
|- ( ph -> ( ( N x. ( ( 2 x. N ) + 1 ) ) x. ( ( 2 x. N ) _C N ) ) || ( _lcm ` ( 1 ... ( ( 2 x. N ) + 1 ) ) ) ) |