| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lcmineqlem20.1 |
|- ( ph -> N e. NN ) |
| 2 |
1
|
nnred |
|- ( ph -> N e. RR ) |
| 3 |
|
2nn0 |
|- 2 e. NN0 |
| 4 |
3
|
a1i |
|- ( ph -> 2 e. NN0 ) |
| 5 |
1
|
nnnn0d |
|- ( ph -> N e. NN0 ) |
| 6 |
4 5
|
nn0mulcld |
|- ( ph -> ( 2 x. N ) e. NN0 ) |
| 7 |
|
2re |
|- 2 e. RR |
| 8 |
|
reexpcl |
|- ( ( 2 e. RR /\ ( 2 x. N ) e. NN0 ) -> ( 2 ^ ( 2 x. N ) ) e. RR ) |
| 9 |
7 8
|
mpan |
|- ( ( 2 x. N ) e. NN0 -> ( 2 ^ ( 2 x. N ) ) e. RR ) |
| 10 |
6 9
|
syl |
|- ( ph -> ( 2 ^ ( 2 x. N ) ) e. RR ) |
| 11 |
2 10
|
remulcld |
|- ( ph -> ( N x. ( 2 ^ ( 2 x. N ) ) ) e. RR ) |
| 12 |
7
|
a1i |
|- ( ph -> 2 e. RR ) |
| 13 |
12 2
|
remulcld |
|- ( ph -> ( 2 x. N ) e. RR ) |
| 14 |
|
1red |
|- ( ph -> 1 e. RR ) |
| 15 |
13 14
|
readdcld |
|- ( ph -> ( ( 2 x. N ) + 1 ) e. RR ) |
| 16 |
|
2nn |
|- 2 e. NN |
| 17 |
16
|
a1i |
|- ( ph -> 2 e. NN ) |
| 18 |
17 1
|
nnmulcld |
|- ( ph -> ( 2 x. N ) e. NN ) |
| 19 |
5
|
nn0ge0d |
|- ( ph -> 0 <_ N ) |
| 20 |
17
|
nnge1d |
|- ( ph -> 1 <_ 2 ) |
| 21 |
2 12 19 20
|
lemulge12d |
|- ( ph -> N <_ ( 2 x. N ) ) |
| 22 |
18 5 21
|
bccl2d |
|- ( ph -> ( ( 2 x. N ) _C N ) e. NN ) |
| 23 |
22
|
nnred |
|- ( ph -> ( ( 2 x. N ) _C N ) e. RR ) |
| 24 |
15 23
|
remulcld |
|- ( ph -> ( ( ( 2 x. N ) + 1 ) x. ( ( 2 x. N ) _C N ) ) e. RR ) |
| 25 |
2 24
|
remulcld |
|- ( ph -> ( N x. ( ( ( 2 x. N ) + 1 ) x. ( ( 2 x. N ) _C N ) ) ) e. RR ) |
| 26 |
|
fz1ssnn |
|- ( 1 ... ( ( 2 x. N ) + 1 ) ) C_ NN |
| 27 |
|
fzfi |
|- ( 1 ... ( ( 2 x. N ) + 1 ) ) e. Fin |
| 28 |
|
lcmfnncl |
|- ( ( ( 1 ... ( ( 2 x. N ) + 1 ) ) C_ NN /\ ( 1 ... ( ( 2 x. N ) + 1 ) ) e. Fin ) -> ( _lcm ` ( 1 ... ( ( 2 x. N ) + 1 ) ) ) e. NN ) |
| 29 |
26 27 28
|
mp2an |
|- ( _lcm ` ( 1 ... ( ( 2 x. N ) + 1 ) ) ) e. NN |
| 30 |
29
|
a1i |
|- ( ph -> ( _lcm ` ( 1 ... ( ( 2 x. N ) + 1 ) ) ) e. NN ) |
| 31 |
30
|
nnred |
|- ( ph -> ( _lcm ` ( 1 ... ( ( 2 x. N ) + 1 ) ) ) e. RR ) |
| 32 |
5
|
lcmineqlem17 |
|- ( ph -> ( 2 ^ ( 2 x. N ) ) <_ ( ( ( 2 x. N ) + 1 ) x. ( ( 2 x. N ) _C N ) ) ) |
| 33 |
1
|
nnrpd |
|- ( ph -> N e. RR+ ) |
| 34 |
10 24 33
|
lemul2d |
|- ( ph -> ( ( 2 ^ ( 2 x. N ) ) <_ ( ( ( 2 x. N ) + 1 ) x. ( ( 2 x. N ) _C N ) ) <-> ( N x. ( 2 ^ ( 2 x. N ) ) ) <_ ( N x. ( ( ( 2 x. N ) + 1 ) x. ( ( 2 x. N ) _C N ) ) ) ) ) |
| 35 |
32 34
|
mpbid |
|- ( ph -> ( N x. ( 2 ^ ( 2 x. N ) ) ) <_ ( N x. ( ( ( 2 x. N ) + 1 ) x. ( ( 2 x. N ) _C N ) ) ) ) |
| 36 |
2
|
recnd |
|- ( ph -> N e. CC ) |
| 37 |
15
|
recnd |
|- ( ph -> ( ( 2 x. N ) + 1 ) e. CC ) |
| 38 |
23
|
recnd |
|- ( ph -> ( ( 2 x. N ) _C N ) e. CC ) |
| 39 |
36 37 38
|
mulassd |
|- ( ph -> ( ( N x. ( ( 2 x. N ) + 1 ) ) x. ( ( 2 x. N ) _C N ) ) = ( N x. ( ( ( 2 x. N ) + 1 ) x. ( ( 2 x. N ) _C N ) ) ) ) |
| 40 |
1
|
lcmineqlem19 |
|- ( ph -> ( ( N x. ( ( 2 x. N ) + 1 ) ) x. ( ( 2 x. N ) _C N ) ) || ( _lcm ` ( 1 ... ( ( 2 x. N ) + 1 ) ) ) ) |
| 41 |
18
|
peano2nnd |
|- ( ph -> ( ( 2 x. N ) + 1 ) e. NN ) |
| 42 |
1 41
|
nnmulcld |
|- ( ph -> ( N x. ( ( 2 x. N ) + 1 ) ) e. NN ) |
| 43 |
42 22
|
nnmulcld |
|- ( ph -> ( ( N x. ( ( 2 x. N ) + 1 ) ) x. ( ( 2 x. N ) _C N ) ) e. NN ) |
| 44 |
43
|
nnzd |
|- ( ph -> ( ( N x. ( ( 2 x. N ) + 1 ) ) x. ( ( 2 x. N ) _C N ) ) e. ZZ ) |
| 45 |
|
dvdsle |
|- ( ( ( ( N x. ( ( 2 x. N ) + 1 ) ) x. ( ( 2 x. N ) _C N ) ) e. ZZ /\ ( _lcm ` ( 1 ... ( ( 2 x. N ) + 1 ) ) ) e. NN ) -> ( ( ( N x. ( ( 2 x. N ) + 1 ) ) x. ( ( 2 x. N ) _C N ) ) || ( _lcm ` ( 1 ... ( ( 2 x. N ) + 1 ) ) ) -> ( ( N x. ( ( 2 x. N ) + 1 ) ) x. ( ( 2 x. N ) _C N ) ) <_ ( _lcm ` ( 1 ... ( ( 2 x. N ) + 1 ) ) ) ) ) |
| 46 |
44 30 45
|
syl2anc |
|- ( ph -> ( ( ( N x. ( ( 2 x. N ) + 1 ) ) x. ( ( 2 x. N ) _C N ) ) || ( _lcm ` ( 1 ... ( ( 2 x. N ) + 1 ) ) ) -> ( ( N x. ( ( 2 x. N ) + 1 ) ) x. ( ( 2 x. N ) _C N ) ) <_ ( _lcm ` ( 1 ... ( ( 2 x. N ) + 1 ) ) ) ) ) |
| 47 |
40 46
|
mpd |
|- ( ph -> ( ( N x. ( ( 2 x. N ) + 1 ) ) x. ( ( 2 x. N ) _C N ) ) <_ ( _lcm ` ( 1 ... ( ( 2 x. N ) + 1 ) ) ) ) |
| 48 |
39 47
|
eqbrtrrd |
|- ( ph -> ( N x. ( ( ( 2 x. N ) + 1 ) x. ( ( 2 x. N ) _C N ) ) ) <_ ( _lcm ` ( 1 ... ( ( 2 x. N ) + 1 ) ) ) ) |
| 49 |
11 25 31 35 48
|
letrd |
|- ( ph -> ( N x. ( 2 ^ ( 2 x. N ) ) ) <_ ( _lcm ` ( 1 ... ( ( 2 x. N ) + 1 ) ) ) ) |