| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lcmineqlem21.1 |
|- ( ph -> N e. NN ) |
| 2 |
|
lcmineqlem21.2 |
|- ( ph -> 4 <_ N ) |
| 3 |
|
2nn0 |
|- 2 e. NN0 |
| 4 |
3
|
a1i |
|- ( ph -> 2 e. NN0 ) |
| 5 |
4
|
nn0red |
|- ( ph -> 2 e. RR ) |
| 6 |
1
|
nnnn0d |
|- ( ph -> N e. NN0 ) |
| 7 |
4 6
|
nn0mulcld |
|- ( ph -> ( 2 x. N ) e. NN0 ) |
| 8 |
7 4
|
nn0addcld |
|- ( ph -> ( ( 2 x. N ) + 2 ) e. NN0 ) |
| 9 |
5 8
|
reexpcld |
|- ( ph -> ( 2 ^ ( ( 2 x. N ) + 2 ) ) e. RR ) |
| 10 |
1
|
nnred |
|- ( ph -> N e. RR ) |
| 11 |
|
2rp |
|- 2 e. RR+ |
| 12 |
11
|
a1i |
|- ( ph -> 2 e. RR+ ) |
| 13 |
|
2z |
|- 2 e. ZZ |
| 14 |
13
|
a1i |
|- ( ph -> 2 e. ZZ ) |
| 15 |
1
|
nnzd |
|- ( ph -> N e. ZZ ) |
| 16 |
14 15
|
zmulcld |
|- ( ph -> ( 2 x. N ) e. ZZ ) |
| 17 |
12 16
|
rpexpcld |
|- ( ph -> ( 2 ^ ( 2 x. N ) ) e. RR+ ) |
| 18 |
17
|
rpred |
|- ( ph -> ( 2 ^ ( 2 x. N ) ) e. RR ) |
| 19 |
10 18
|
remulcld |
|- ( ph -> ( N x. ( 2 ^ ( 2 x. N ) ) ) e. RR ) |
| 20 |
|
fz1ssnn |
|- ( 1 ... ( ( 2 x. N ) + 1 ) ) C_ NN |
| 21 |
|
fzfi |
|- ( 1 ... ( ( 2 x. N ) + 1 ) ) e. Fin |
| 22 |
|
lcmfnncl |
|- ( ( ( 1 ... ( ( 2 x. N ) + 1 ) ) C_ NN /\ ( 1 ... ( ( 2 x. N ) + 1 ) ) e. Fin ) -> ( _lcm ` ( 1 ... ( ( 2 x. N ) + 1 ) ) ) e. NN ) |
| 23 |
20 21 22
|
mp2an |
|- ( _lcm ` ( 1 ... ( ( 2 x. N ) + 1 ) ) ) e. NN |
| 24 |
23
|
a1i |
|- ( ph -> ( _lcm ` ( 1 ... ( ( 2 x. N ) + 1 ) ) ) e. NN ) |
| 25 |
24
|
nnred |
|- ( ph -> ( _lcm ` ( 1 ... ( ( 2 x. N ) + 1 ) ) ) e. RR ) |
| 26 |
|
4re |
|- 4 e. RR |
| 27 |
26
|
a1i |
|- ( ph -> 4 e. RR ) |
| 28 |
27 10 17
|
lemul1d |
|- ( ph -> ( 4 <_ N <-> ( 4 x. ( 2 ^ ( 2 x. N ) ) ) <_ ( N x. ( 2 ^ ( 2 x. N ) ) ) ) ) |
| 29 |
2 28
|
mpbid |
|- ( ph -> ( 4 x. ( 2 ^ ( 2 x. N ) ) ) <_ ( N x. ( 2 ^ ( 2 x. N ) ) ) ) |
| 30 |
|
2cnd |
|- ( ph -> 2 e. CC ) |
| 31 |
30 4 7
|
expaddd |
|- ( ph -> ( 2 ^ ( ( 2 x. N ) + 2 ) ) = ( ( 2 ^ ( 2 x. N ) ) x. ( 2 ^ 2 ) ) ) |
| 32 |
|
sq2 |
|- ( 2 ^ 2 ) = 4 |
| 33 |
32
|
oveq2i |
|- ( ( 2 ^ ( 2 x. N ) ) x. ( 2 ^ 2 ) ) = ( ( 2 ^ ( 2 x. N ) ) x. 4 ) |
| 34 |
31 33
|
eqtrdi |
|- ( ph -> ( 2 ^ ( ( 2 x. N ) + 2 ) ) = ( ( 2 ^ ( 2 x. N ) ) x. 4 ) ) |
| 35 |
17
|
rpcnd |
|- ( ph -> ( 2 ^ ( 2 x. N ) ) e. CC ) |
| 36 |
27
|
recnd |
|- ( ph -> 4 e. CC ) |
| 37 |
35 36
|
mulcomd |
|- ( ph -> ( ( 2 ^ ( 2 x. N ) ) x. 4 ) = ( 4 x. ( 2 ^ ( 2 x. N ) ) ) ) |
| 38 |
34 37
|
eqtrd |
|- ( ph -> ( 2 ^ ( ( 2 x. N ) + 2 ) ) = ( 4 x. ( 2 ^ ( 2 x. N ) ) ) ) |
| 39 |
38
|
breq1d |
|- ( ph -> ( ( 2 ^ ( ( 2 x. N ) + 2 ) ) <_ ( N x. ( 2 ^ ( 2 x. N ) ) ) <-> ( 4 x. ( 2 ^ ( 2 x. N ) ) ) <_ ( N x. ( 2 ^ ( 2 x. N ) ) ) ) ) |
| 40 |
29 39
|
mpbird |
|- ( ph -> ( 2 ^ ( ( 2 x. N ) + 2 ) ) <_ ( N x. ( 2 ^ ( 2 x. N ) ) ) ) |
| 41 |
1
|
lcmineqlem20 |
|- ( ph -> ( N x. ( 2 ^ ( 2 x. N ) ) ) <_ ( _lcm ` ( 1 ... ( ( 2 x. N ) + 1 ) ) ) ) |
| 42 |
9 19 25 40 41
|
letrd |
|- ( ph -> ( 2 ^ ( ( 2 x. N ) + 2 ) ) <_ ( _lcm ` ( 1 ... ( ( 2 x. N ) + 1 ) ) ) ) |