Metamath Proof Explorer


Theorem lcmineqlem21

Description: The lcm inequality lemma without base cases 7 and 8. (Contributed by metakunt, 12-May-2024)

Ref Expression
Hypotheses lcmineqlem21.1 φN
lcmineqlem21.2 φ4N
Assertion lcmineqlem21 φ22 N+2lcm_12 N+1

Proof

Step Hyp Ref Expression
1 lcmineqlem21.1 φN
2 lcmineqlem21.2 φ4N
3 2nn0 20
4 3 a1i φ20
5 4 nn0red φ2
6 1 nnnn0d φN0
7 4 6 nn0mulcld φ2 N0
8 7 4 nn0addcld φ2 N+20
9 5 8 reexpcld φ22 N+2
10 1 nnred φN
11 2rp 2+
12 11 a1i φ2+
13 2z 2
14 13 a1i φ2
15 1 nnzd φN
16 14 15 zmulcld φ2 N
17 12 16 rpexpcld φ22 N+
18 17 rpred φ22 N
19 10 18 remulcld φN22 N
20 fz1ssnn 12 N+1
21 fzfi 12 N+1Fin
22 lcmfnncl 12 N+112 N+1Finlcm_12 N+1
23 20 21 22 mp2an lcm_12 N+1
24 23 a1i φlcm_12 N+1
25 24 nnred φlcm_12 N+1
26 4re 4
27 26 a1i φ4
28 27 10 17 lemul1d φ4N422 NN22 N
29 2 28 mpbid φ422 NN22 N
30 2cnd φ2
31 30 4 7 expaddd φ22 N+2=22 N22
32 sq2 22=4
33 32 oveq2i 22 N22=22 N4
34 31 33 eqtrdi φ22 N+2=22 N4
35 17 rpcnd φ22 N
36 27 recnd φ4
37 35 36 mulcomd φ22 N4=422 N
38 34 37 eqtrd φ22 N+2=422 N
39 38 breq1d φ22 N+2N22 N422 NN22 N
40 29 39 mpbird φ22 N+2N22 N
41 1 lcmineqlem20 φN22 Nlcm_12 N+1
42 9 19 25 40 41 letrd φ22 N+2lcm_12 N+1