| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lcmineqlem21.1 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
| 2 |
|
lcmineqlem21.2 |
⊢ ( 𝜑 → 4 ≤ 𝑁 ) |
| 3 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
| 4 |
3
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℕ0 ) |
| 5 |
4
|
nn0red |
⊢ ( 𝜑 → 2 ∈ ℝ ) |
| 6 |
1
|
nnnn0d |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
| 7 |
4 6
|
nn0mulcld |
⊢ ( 𝜑 → ( 2 · 𝑁 ) ∈ ℕ0 ) |
| 8 |
7 4
|
nn0addcld |
⊢ ( 𝜑 → ( ( 2 · 𝑁 ) + 2 ) ∈ ℕ0 ) |
| 9 |
5 8
|
reexpcld |
⊢ ( 𝜑 → ( 2 ↑ ( ( 2 · 𝑁 ) + 2 ) ) ∈ ℝ ) |
| 10 |
1
|
nnred |
⊢ ( 𝜑 → 𝑁 ∈ ℝ ) |
| 11 |
|
2rp |
⊢ 2 ∈ ℝ+ |
| 12 |
11
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℝ+ ) |
| 13 |
|
2z |
⊢ 2 ∈ ℤ |
| 14 |
13
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℤ ) |
| 15 |
1
|
nnzd |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
| 16 |
14 15
|
zmulcld |
⊢ ( 𝜑 → ( 2 · 𝑁 ) ∈ ℤ ) |
| 17 |
12 16
|
rpexpcld |
⊢ ( 𝜑 → ( 2 ↑ ( 2 · 𝑁 ) ) ∈ ℝ+ ) |
| 18 |
17
|
rpred |
⊢ ( 𝜑 → ( 2 ↑ ( 2 · 𝑁 ) ) ∈ ℝ ) |
| 19 |
10 18
|
remulcld |
⊢ ( 𝜑 → ( 𝑁 · ( 2 ↑ ( 2 · 𝑁 ) ) ) ∈ ℝ ) |
| 20 |
|
fz1ssnn |
⊢ ( 1 ... ( ( 2 · 𝑁 ) + 1 ) ) ⊆ ℕ |
| 21 |
|
fzfi |
⊢ ( 1 ... ( ( 2 · 𝑁 ) + 1 ) ) ∈ Fin |
| 22 |
|
lcmfnncl |
⊢ ( ( ( 1 ... ( ( 2 · 𝑁 ) + 1 ) ) ⊆ ℕ ∧ ( 1 ... ( ( 2 · 𝑁 ) + 1 ) ) ∈ Fin ) → ( lcm ‘ ( 1 ... ( ( 2 · 𝑁 ) + 1 ) ) ) ∈ ℕ ) |
| 23 |
20 21 22
|
mp2an |
⊢ ( lcm ‘ ( 1 ... ( ( 2 · 𝑁 ) + 1 ) ) ) ∈ ℕ |
| 24 |
23
|
a1i |
⊢ ( 𝜑 → ( lcm ‘ ( 1 ... ( ( 2 · 𝑁 ) + 1 ) ) ) ∈ ℕ ) |
| 25 |
24
|
nnred |
⊢ ( 𝜑 → ( lcm ‘ ( 1 ... ( ( 2 · 𝑁 ) + 1 ) ) ) ∈ ℝ ) |
| 26 |
|
4re |
⊢ 4 ∈ ℝ |
| 27 |
26
|
a1i |
⊢ ( 𝜑 → 4 ∈ ℝ ) |
| 28 |
27 10 17
|
lemul1d |
⊢ ( 𝜑 → ( 4 ≤ 𝑁 ↔ ( 4 · ( 2 ↑ ( 2 · 𝑁 ) ) ) ≤ ( 𝑁 · ( 2 ↑ ( 2 · 𝑁 ) ) ) ) ) |
| 29 |
2 28
|
mpbid |
⊢ ( 𝜑 → ( 4 · ( 2 ↑ ( 2 · 𝑁 ) ) ) ≤ ( 𝑁 · ( 2 ↑ ( 2 · 𝑁 ) ) ) ) |
| 30 |
|
2cnd |
⊢ ( 𝜑 → 2 ∈ ℂ ) |
| 31 |
30 4 7
|
expaddd |
⊢ ( 𝜑 → ( 2 ↑ ( ( 2 · 𝑁 ) + 2 ) ) = ( ( 2 ↑ ( 2 · 𝑁 ) ) · ( 2 ↑ 2 ) ) ) |
| 32 |
|
sq2 |
⊢ ( 2 ↑ 2 ) = 4 |
| 33 |
32
|
oveq2i |
⊢ ( ( 2 ↑ ( 2 · 𝑁 ) ) · ( 2 ↑ 2 ) ) = ( ( 2 ↑ ( 2 · 𝑁 ) ) · 4 ) |
| 34 |
31 33
|
eqtrdi |
⊢ ( 𝜑 → ( 2 ↑ ( ( 2 · 𝑁 ) + 2 ) ) = ( ( 2 ↑ ( 2 · 𝑁 ) ) · 4 ) ) |
| 35 |
17
|
rpcnd |
⊢ ( 𝜑 → ( 2 ↑ ( 2 · 𝑁 ) ) ∈ ℂ ) |
| 36 |
27
|
recnd |
⊢ ( 𝜑 → 4 ∈ ℂ ) |
| 37 |
35 36
|
mulcomd |
⊢ ( 𝜑 → ( ( 2 ↑ ( 2 · 𝑁 ) ) · 4 ) = ( 4 · ( 2 ↑ ( 2 · 𝑁 ) ) ) ) |
| 38 |
34 37
|
eqtrd |
⊢ ( 𝜑 → ( 2 ↑ ( ( 2 · 𝑁 ) + 2 ) ) = ( 4 · ( 2 ↑ ( 2 · 𝑁 ) ) ) ) |
| 39 |
38
|
breq1d |
⊢ ( 𝜑 → ( ( 2 ↑ ( ( 2 · 𝑁 ) + 2 ) ) ≤ ( 𝑁 · ( 2 ↑ ( 2 · 𝑁 ) ) ) ↔ ( 4 · ( 2 ↑ ( 2 · 𝑁 ) ) ) ≤ ( 𝑁 · ( 2 ↑ ( 2 · 𝑁 ) ) ) ) ) |
| 40 |
29 39
|
mpbird |
⊢ ( 𝜑 → ( 2 ↑ ( ( 2 · 𝑁 ) + 2 ) ) ≤ ( 𝑁 · ( 2 ↑ ( 2 · 𝑁 ) ) ) ) |
| 41 |
1
|
lcmineqlem20 |
⊢ ( 𝜑 → ( 𝑁 · ( 2 ↑ ( 2 · 𝑁 ) ) ) ≤ ( lcm ‘ ( 1 ... ( ( 2 · 𝑁 ) + 1 ) ) ) ) |
| 42 |
9 19 25 40 41
|
letrd |
⊢ ( 𝜑 → ( 2 ↑ ( ( 2 · 𝑁 ) + 2 ) ) ≤ ( lcm ‘ ( 1 ... ( ( 2 · 𝑁 ) + 1 ) ) ) ) |