Step |
Hyp |
Ref |
Expression |
1 |
|
lcmineqlem22.1 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
2 |
|
lcmineqlem22.2 |
⊢ ( 𝜑 → 4 ≤ 𝑁 ) |
3 |
|
2re |
⊢ 2 ∈ ℝ |
4 |
3
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℝ ) |
5 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
6 |
5
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℕ0 ) |
7 |
1
|
nnnn0d |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
8 |
6 7
|
nn0mulcld |
⊢ ( 𝜑 → ( 2 · 𝑁 ) ∈ ℕ0 ) |
9 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
10 |
9
|
a1i |
⊢ ( 𝜑 → 1 ∈ ℕ0 ) |
11 |
8 10
|
nn0addcld |
⊢ ( 𝜑 → ( ( 2 · 𝑁 ) + 1 ) ∈ ℕ0 ) |
12 |
4 11
|
reexpcld |
⊢ ( 𝜑 → ( 2 ↑ ( ( 2 · 𝑁 ) + 1 ) ) ∈ ℝ ) |
13 |
8 6
|
nn0addcld |
⊢ ( 𝜑 → ( ( 2 · 𝑁 ) + 2 ) ∈ ℕ0 ) |
14 |
4 13
|
reexpcld |
⊢ ( 𝜑 → ( 2 ↑ ( ( 2 · 𝑁 ) + 2 ) ) ∈ ℝ ) |
15 |
|
fz1ssnn |
⊢ ( 1 ... ( ( 2 · 𝑁 ) + 1 ) ) ⊆ ℕ |
16 |
|
fzfi |
⊢ ( 1 ... ( ( 2 · 𝑁 ) + 1 ) ) ∈ Fin |
17 |
|
lcmfnncl |
⊢ ( ( ( 1 ... ( ( 2 · 𝑁 ) + 1 ) ) ⊆ ℕ ∧ ( 1 ... ( ( 2 · 𝑁 ) + 1 ) ) ∈ Fin ) → ( lcm ‘ ( 1 ... ( ( 2 · 𝑁 ) + 1 ) ) ) ∈ ℕ ) |
18 |
15 16 17
|
mp2an |
⊢ ( lcm ‘ ( 1 ... ( ( 2 · 𝑁 ) + 1 ) ) ) ∈ ℕ |
19 |
18
|
a1i |
⊢ ( 𝜑 → ( lcm ‘ ( 1 ... ( ( 2 · 𝑁 ) + 1 ) ) ) ∈ ℕ ) |
20 |
19
|
nnred |
⊢ ( 𝜑 → ( lcm ‘ ( 1 ... ( ( 2 · 𝑁 ) + 1 ) ) ) ∈ ℝ ) |
21 |
|
1red |
⊢ ( 𝜑 → 1 ∈ ℝ ) |
22 |
1
|
nnred |
⊢ ( 𝜑 → 𝑁 ∈ ℝ ) |
23 |
4 22
|
remulcld |
⊢ ( 𝜑 → ( 2 · 𝑁 ) ∈ ℝ ) |
24 |
|
1lt2 |
⊢ 1 < 2 |
25 |
24
|
a1i |
⊢ ( 𝜑 → 1 < 2 ) |
26 |
21 4 25
|
ltled |
⊢ ( 𝜑 → 1 ≤ 2 ) |
27 |
21 4 23 26
|
leadd2dd |
⊢ ( 𝜑 → ( ( 2 · 𝑁 ) + 1 ) ≤ ( ( 2 · 𝑁 ) + 2 ) ) |
28 |
|
2z |
⊢ 2 ∈ ℤ |
29 |
28
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℤ ) |
30 |
1
|
nnzd |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
31 |
29 30
|
zmulcld |
⊢ ( 𝜑 → ( 2 · 𝑁 ) ∈ ℤ ) |
32 |
31
|
peano2zd |
⊢ ( 𝜑 → ( ( 2 · 𝑁 ) + 1 ) ∈ ℤ ) |
33 |
31 29
|
zaddcld |
⊢ ( 𝜑 → ( ( 2 · 𝑁 ) + 2 ) ∈ ℤ ) |
34 |
4 32 33 25
|
leexp2d |
⊢ ( 𝜑 → ( ( ( 2 · 𝑁 ) + 1 ) ≤ ( ( 2 · 𝑁 ) + 2 ) ↔ ( 2 ↑ ( ( 2 · 𝑁 ) + 1 ) ) ≤ ( 2 ↑ ( ( 2 · 𝑁 ) + 2 ) ) ) ) |
35 |
27 34
|
mpbid |
⊢ ( 𝜑 → ( 2 ↑ ( ( 2 · 𝑁 ) + 1 ) ) ≤ ( 2 ↑ ( ( 2 · 𝑁 ) + 2 ) ) ) |
36 |
1 2
|
lcmineqlem21 |
⊢ ( 𝜑 → ( 2 ↑ ( ( 2 · 𝑁 ) + 2 ) ) ≤ ( lcm ‘ ( 1 ... ( ( 2 · 𝑁 ) + 1 ) ) ) ) |
37 |
12 14 20 35 36
|
letrd |
⊢ ( 𝜑 → ( 2 ↑ ( ( 2 · 𝑁 ) + 1 ) ) ≤ ( lcm ‘ ( 1 ... ( ( 2 · 𝑁 ) + 1 ) ) ) ) |
38 |
|
fz1ssnn |
⊢ ( 1 ... ( ( 2 · 𝑁 ) + 2 ) ) ⊆ ℕ |
39 |
|
fzfi |
⊢ ( 1 ... ( ( 2 · 𝑁 ) + 2 ) ) ∈ Fin |
40 |
|
lcmfnncl |
⊢ ( ( ( 1 ... ( ( 2 · 𝑁 ) + 2 ) ) ⊆ ℕ ∧ ( 1 ... ( ( 2 · 𝑁 ) + 2 ) ) ∈ Fin ) → ( lcm ‘ ( 1 ... ( ( 2 · 𝑁 ) + 2 ) ) ) ∈ ℕ ) |
41 |
38 39 40
|
mp2an |
⊢ ( lcm ‘ ( 1 ... ( ( 2 · 𝑁 ) + 2 ) ) ) ∈ ℕ |
42 |
41
|
a1i |
⊢ ( 𝜑 → ( lcm ‘ ( 1 ... ( ( 2 · 𝑁 ) + 2 ) ) ) ∈ ℕ ) |
43 |
42
|
nnred |
⊢ ( 𝜑 → ( lcm ‘ ( 1 ... ( ( 2 · 𝑁 ) + 2 ) ) ) ∈ ℝ ) |
44 |
19
|
nnzd |
⊢ ( 𝜑 → ( lcm ‘ ( 1 ... ( ( 2 · 𝑁 ) + 1 ) ) ) ∈ ℤ ) |
45 |
44 33
|
jca |
⊢ ( 𝜑 → ( ( lcm ‘ ( 1 ... ( ( 2 · 𝑁 ) + 1 ) ) ) ∈ ℤ ∧ ( ( 2 · 𝑁 ) + 2 ) ∈ ℤ ) ) |
46 |
|
dvdslcm |
⊢ ( ( ( lcm ‘ ( 1 ... ( ( 2 · 𝑁 ) + 1 ) ) ) ∈ ℤ ∧ ( ( 2 · 𝑁 ) + 2 ) ∈ ℤ ) → ( ( lcm ‘ ( 1 ... ( ( 2 · 𝑁 ) + 1 ) ) ) ∥ ( ( lcm ‘ ( 1 ... ( ( 2 · 𝑁 ) + 1 ) ) ) lcm ( ( 2 · 𝑁 ) + 2 ) ) ∧ ( ( 2 · 𝑁 ) + 2 ) ∥ ( ( lcm ‘ ( 1 ... ( ( 2 · 𝑁 ) + 1 ) ) ) lcm ( ( 2 · 𝑁 ) + 2 ) ) ) ) |
47 |
45 46
|
syl |
⊢ ( 𝜑 → ( ( lcm ‘ ( 1 ... ( ( 2 · 𝑁 ) + 1 ) ) ) ∥ ( ( lcm ‘ ( 1 ... ( ( 2 · 𝑁 ) + 1 ) ) ) lcm ( ( 2 · 𝑁 ) + 2 ) ) ∧ ( ( 2 · 𝑁 ) + 2 ) ∥ ( ( lcm ‘ ( 1 ... ( ( 2 · 𝑁 ) + 1 ) ) ) lcm ( ( 2 · 𝑁 ) + 2 ) ) ) ) |
48 |
47
|
simpld |
⊢ ( 𝜑 → ( lcm ‘ ( 1 ... ( ( 2 · 𝑁 ) + 1 ) ) ) ∥ ( ( lcm ‘ ( 1 ... ( ( 2 · 𝑁 ) + 1 ) ) ) lcm ( ( 2 · 𝑁 ) + 2 ) ) ) |
49 |
|
2nn |
⊢ 2 ∈ ℕ |
50 |
49
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℕ ) |
51 |
50 1
|
nnmulcld |
⊢ ( 𝜑 → ( 2 · 𝑁 ) ∈ ℕ ) |
52 |
51 50
|
nnaddcld |
⊢ ( 𝜑 → ( ( 2 · 𝑁 ) + 2 ) ∈ ℕ ) |
53 |
52
|
lcmfunnnd |
⊢ ( 𝜑 → ( lcm ‘ ( 1 ... ( ( 2 · 𝑁 ) + 2 ) ) ) = ( ( lcm ‘ ( 1 ... ( ( ( 2 · 𝑁 ) + 2 ) − 1 ) ) ) lcm ( ( 2 · 𝑁 ) + 2 ) ) ) |
54 |
23
|
recnd |
⊢ ( 𝜑 → ( 2 · 𝑁 ) ∈ ℂ ) |
55 |
4
|
recnd |
⊢ ( 𝜑 → 2 ∈ ℂ ) |
56 |
|
1cnd |
⊢ ( 𝜑 → 1 ∈ ℂ ) |
57 |
54 55 56
|
addsubassd |
⊢ ( 𝜑 → ( ( ( 2 · 𝑁 ) + 2 ) − 1 ) = ( ( 2 · 𝑁 ) + ( 2 − 1 ) ) ) |
58 |
|
2m1e1 |
⊢ ( 2 − 1 ) = 1 |
59 |
58
|
oveq2i |
⊢ ( ( 2 · 𝑁 ) + ( 2 − 1 ) ) = ( ( 2 · 𝑁 ) + 1 ) |
60 |
57 59
|
eqtrdi |
⊢ ( 𝜑 → ( ( ( 2 · 𝑁 ) + 2 ) − 1 ) = ( ( 2 · 𝑁 ) + 1 ) ) |
61 |
60
|
oveq2d |
⊢ ( 𝜑 → ( 1 ... ( ( ( 2 · 𝑁 ) + 2 ) − 1 ) ) = ( 1 ... ( ( 2 · 𝑁 ) + 1 ) ) ) |
62 |
61
|
fveq2d |
⊢ ( 𝜑 → ( lcm ‘ ( 1 ... ( ( ( 2 · 𝑁 ) + 2 ) − 1 ) ) ) = ( lcm ‘ ( 1 ... ( ( 2 · 𝑁 ) + 1 ) ) ) ) |
63 |
62
|
oveq1d |
⊢ ( 𝜑 → ( ( lcm ‘ ( 1 ... ( ( ( 2 · 𝑁 ) + 2 ) − 1 ) ) ) lcm ( ( 2 · 𝑁 ) + 2 ) ) = ( ( lcm ‘ ( 1 ... ( ( 2 · 𝑁 ) + 1 ) ) ) lcm ( ( 2 · 𝑁 ) + 2 ) ) ) |
64 |
53 63
|
eqtrd |
⊢ ( 𝜑 → ( lcm ‘ ( 1 ... ( ( 2 · 𝑁 ) + 2 ) ) ) = ( ( lcm ‘ ( 1 ... ( ( 2 · 𝑁 ) + 1 ) ) ) lcm ( ( 2 · 𝑁 ) + 2 ) ) ) |
65 |
48 64
|
breqtrrd |
⊢ ( 𝜑 → ( lcm ‘ ( 1 ... ( ( 2 · 𝑁 ) + 1 ) ) ) ∥ ( lcm ‘ ( 1 ... ( ( 2 · 𝑁 ) + 2 ) ) ) ) |
66 |
44 42
|
jca |
⊢ ( 𝜑 → ( ( lcm ‘ ( 1 ... ( ( 2 · 𝑁 ) + 1 ) ) ) ∈ ℤ ∧ ( lcm ‘ ( 1 ... ( ( 2 · 𝑁 ) + 2 ) ) ) ∈ ℕ ) ) |
67 |
|
dvdsle |
⊢ ( ( ( lcm ‘ ( 1 ... ( ( 2 · 𝑁 ) + 1 ) ) ) ∈ ℤ ∧ ( lcm ‘ ( 1 ... ( ( 2 · 𝑁 ) + 2 ) ) ) ∈ ℕ ) → ( ( lcm ‘ ( 1 ... ( ( 2 · 𝑁 ) + 1 ) ) ) ∥ ( lcm ‘ ( 1 ... ( ( 2 · 𝑁 ) + 2 ) ) ) → ( lcm ‘ ( 1 ... ( ( 2 · 𝑁 ) + 1 ) ) ) ≤ ( lcm ‘ ( 1 ... ( ( 2 · 𝑁 ) + 2 ) ) ) ) ) |
68 |
66 67
|
syl |
⊢ ( 𝜑 → ( ( lcm ‘ ( 1 ... ( ( 2 · 𝑁 ) + 1 ) ) ) ∥ ( lcm ‘ ( 1 ... ( ( 2 · 𝑁 ) + 2 ) ) ) → ( lcm ‘ ( 1 ... ( ( 2 · 𝑁 ) + 1 ) ) ) ≤ ( lcm ‘ ( 1 ... ( ( 2 · 𝑁 ) + 2 ) ) ) ) ) |
69 |
65 68
|
mpd |
⊢ ( 𝜑 → ( lcm ‘ ( 1 ... ( ( 2 · 𝑁 ) + 1 ) ) ) ≤ ( lcm ‘ ( 1 ... ( ( 2 · 𝑁 ) + 2 ) ) ) ) |
70 |
14 20 43 36 69
|
letrd |
⊢ ( 𝜑 → ( 2 ↑ ( ( 2 · 𝑁 ) + 2 ) ) ≤ ( lcm ‘ ( 1 ... ( ( 2 · 𝑁 ) + 2 ) ) ) ) |
71 |
37 70
|
jca |
⊢ ( 𝜑 → ( ( 2 ↑ ( ( 2 · 𝑁 ) + 1 ) ) ≤ ( lcm ‘ ( 1 ... ( ( 2 · 𝑁 ) + 1 ) ) ) ∧ ( 2 ↑ ( ( 2 · 𝑁 ) + 2 ) ) ≤ ( lcm ‘ ( 1 ... ( ( 2 · 𝑁 ) + 2 ) ) ) ) ) |