| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lcmineqlem23.1 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
| 2 |
|
lcmineqlem23.2 |
⊢ ( 𝜑 → 9 ≤ 𝑁 ) |
| 3 |
|
2nn |
⊢ 2 ∈ ℕ |
| 4 |
3
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℕ ) |
| 5 |
1 4
|
jca |
⊢ ( 𝜑 → ( 𝑁 ∈ ℕ ∧ 2 ∈ ℕ ) ) |
| 6 |
|
nndivdvds |
⊢ ( ( 𝑁 ∈ ℕ ∧ 2 ∈ ℕ ) → ( 2 ∥ 𝑁 ↔ ( 𝑁 / 2 ) ∈ ℕ ) ) |
| 7 |
5 6
|
syl |
⊢ ( 𝜑 → ( 2 ∥ 𝑁 ↔ ( 𝑁 / 2 ) ∈ ℕ ) ) |
| 8 |
7
|
biimpa |
⊢ ( ( 𝜑 ∧ 2 ∥ 𝑁 ) → ( 𝑁 / 2 ) ∈ ℕ ) |
| 9 |
8
|
nnzd |
⊢ ( ( 𝜑 ∧ 2 ∥ 𝑁 ) → ( 𝑁 / 2 ) ∈ ℤ ) |
| 10 |
|
1zzd |
⊢ ( ( 𝜑 ∧ 2 ∥ 𝑁 ) → 1 ∈ ℤ ) |
| 11 |
9 10
|
zsubcld |
⊢ ( ( 𝜑 ∧ 2 ∥ 𝑁 ) → ( ( 𝑁 / 2 ) − 1 ) ∈ ℤ ) |
| 12 |
|
0red |
⊢ ( ( 𝜑 ∧ 2 ∥ 𝑁 ) → 0 ∈ ℝ ) |
| 13 |
|
4re |
⊢ 4 ∈ ℝ |
| 14 |
13
|
a1i |
⊢ ( ( 𝜑 ∧ 2 ∥ 𝑁 ) → 4 ∈ ℝ ) |
| 15 |
8
|
nnred |
⊢ ( ( 𝜑 ∧ 2 ∥ 𝑁 ) → ( 𝑁 / 2 ) ∈ ℝ ) |
| 16 |
|
1red |
⊢ ( ( 𝜑 ∧ 2 ∥ 𝑁 ) → 1 ∈ ℝ ) |
| 17 |
15 16
|
resubcld |
⊢ ( ( 𝜑 ∧ 2 ∥ 𝑁 ) → ( ( 𝑁 / 2 ) − 1 ) ∈ ℝ ) |
| 18 |
|
4pos |
⊢ 0 < 4 |
| 19 |
18
|
a1i |
⊢ ( ( 𝜑 ∧ 2 ∥ 𝑁 ) → 0 < 4 ) |
| 20 |
|
5m1e4 |
⊢ ( 5 − 1 ) = 4 |
| 21 |
|
5re |
⊢ 5 ∈ ℝ |
| 22 |
21
|
a1i |
⊢ ( ( 𝜑 ∧ 2 ∥ 𝑁 ) → 5 ∈ ℝ ) |
| 23 |
3
|
nncni |
⊢ 2 ∈ ℂ |
| 24 |
|
5cn |
⊢ 5 ∈ ℂ |
| 25 |
23 24
|
mulcomi |
⊢ ( 2 · 5 ) = ( 5 · 2 ) |
| 26 |
|
5t2e10 |
⊢ ( 5 · 2 ) = ; 1 0 |
| 27 |
25 26
|
eqtri |
⊢ ( 2 · 5 ) = ; 1 0 |
| 28 |
|
10re |
⊢ ; 1 0 ∈ ℝ |
| 29 |
28
|
recni |
⊢ ; 1 0 ∈ ℂ |
| 30 |
3
|
nnne0i |
⊢ 2 ≠ 0 |
| 31 |
29 23 24 30
|
divmuli |
⊢ ( ( ; 1 0 / 2 ) = 5 ↔ ( 2 · 5 ) = ; 1 0 ) |
| 32 |
27 31
|
mpbir |
⊢ ( ; 1 0 / 2 ) = 5 |
| 33 |
28
|
a1i |
⊢ ( ( 𝜑 ∧ 2 ∥ 𝑁 ) → ; 1 0 ∈ ℝ ) |
| 34 |
1
|
nnred |
⊢ ( 𝜑 → 𝑁 ∈ ℝ ) |
| 35 |
34
|
adantr |
⊢ ( ( 𝜑 ∧ 2 ∥ 𝑁 ) → 𝑁 ∈ ℝ ) |
| 36 |
|
2rp |
⊢ 2 ∈ ℝ+ |
| 37 |
36
|
a1i |
⊢ ( ( 𝜑 ∧ 2 ∥ 𝑁 ) → 2 ∈ ℝ+ ) |
| 38 |
|
9p1e10 |
⊢ ( 9 + 1 ) = ; 1 0 |
| 39 |
|
9re |
⊢ 9 ∈ ℝ |
| 40 |
39
|
a1i |
⊢ ( 𝜑 → 9 ∈ ℝ ) |
| 41 |
40 34
|
leloed |
⊢ ( 𝜑 → ( 9 ≤ 𝑁 ↔ ( 9 < 𝑁 ∨ 9 = 𝑁 ) ) ) |
| 42 |
2 41
|
mpbid |
⊢ ( 𝜑 → ( 9 < 𝑁 ∨ 9 = 𝑁 ) ) |
| 43 |
42
|
adantr |
⊢ ( ( 𝜑 ∧ 2 ∥ 𝑁 ) → ( 9 < 𝑁 ∨ 9 = 𝑁 ) ) |
| 44 |
|
4cn |
⊢ 4 ∈ ℂ |
| 45 |
23 44
|
mulcomi |
⊢ ( 2 · 4 ) = ( 4 · 2 ) |
| 46 |
|
4t2e8 |
⊢ ( 4 · 2 ) = 8 |
| 47 |
45 46
|
eqtri |
⊢ ( 2 · 4 ) = 8 |
| 48 |
|
8re |
⊢ 8 ∈ ℝ |
| 49 |
48
|
recni |
⊢ 8 ∈ ℂ |
| 50 |
49 23 44 30
|
divmuli |
⊢ ( ( 8 / 2 ) = 4 ↔ ( 2 · 4 ) = 8 ) |
| 51 |
47 50
|
mpbir |
⊢ ( 8 / 2 ) = 4 |
| 52 |
|
4nn |
⊢ 4 ∈ ℕ |
| 53 |
51 52
|
eqeltri |
⊢ ( 8 / 2 ) ∈ ℕ |
| 54 |
|
8nn |
⊢ 8 ∈ ℕ |
| 55 |
|
nndivdvds |
⊢ ( ( 8 ∈ ℕ ∧ 2 ∈ ℕ ) → ( 2 ∥ 8 ↔ ( 8 / 2 ) ∈ ℕ ) ) |
| 56 |
54 3 55
|
mp2an |
⊢ ( 2 ∥ 8 ↔ ( 8 / 2 ) ∈ ℕ ) |
| 57 |
53 56
|
mpbir |
⊢ 2 ∥ 8 |
| 58 |
|
9m1e8 |
⊢ ( 9 − 1 ) = 8 |
| 59 |
57 58
|
breqtrri |
⊢ 2 ∥ ( 9 − 1 ) |
| 60 |
|
9nn |
⊢ 9 ∈ ℕ |
| 61 |
60
|
nnzi |
⊢ 9 ∈ ℤ |
| 62 |
|
oddm1even |
⊢ ( 9 ∈ ℤ → ( ¬ 2 ∥ 9 ↔ 2 ∥ ( 9 − 1 ) ) ) |
| 63 |
61 62
|
ax-mp |
⊢ ( ¬ 2 ∥ 9 ↔ 2 ∥ ( 9 − 1 ) ) |
| 64 |
59 63
|
mpbir |
⊢ ¬ 2 ∥ 9 |
| 65 |
|
breq2 |
⊢ ( 9 = 𝑁 → ( 2 ∥ 9 ↔ 2 ∥ 𝑁 ) ) |
| 66 |
64 65
|
mtbii |
⊢ ( 9 = 𝑁 → ¬ 2 ∥ 𝑁 ) |
| 67 |
66
|
con2i |
⊢ ( 2 ∥ 𝑁 → ¬ 9 = 𝑁 ) |
| 68 |
67
|
adantl |
⊢ ( ( 𝜑 ∧ 2 ∥ 𝑁 ) → ¬ 9 = 𝑁 ) |
| 69 |
43 68
|
olcnd |
⊢ ( ( 𝜑 ∧ 2 ∥ 𝑁 ) → 9 < 𝑁 ) |
| 70 |
1
|
nnzd |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
| 71 |
|
zltp1le |
⊢ ( ( 9 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 9 < 𝑁 ↔ ( 9 + 1 ) ≤ 𝑁 ) ) |
| 72 |
61 71
|
mpan |
⊢ ( 𝑁 ∈ ℤ → ( 9 < 𝑁 ↔ ( 9 + 1 ) ≤ 𝑁 ) ) |
| 73 |
70 72
|
syl |
⊢ ( 𝜑 → ( 9 < 𝑁 ↔ ( 9 + 1 ) ≤ 𝑁 ) ) |
| 74 |
73
|
adantr |
⊢ ( ( 𝜑 ∧ 2 ∥ 𝑁 ) → ( 9 < 𝑁 ↔ ( 9 + 1 ) ≤ 𝑁 ) ) |
| 75 |
69 74
|
mpbid |
⊢ ( ( 𝜑 ∧ 2 ∥ 𝑁 ) → ( 9 + 1 ) ≤ 𝑁 ) |
| 76 |
38 75
|
eqbrtrrid |
⊢ ( ( 𝜑 ∧ 2 ∥ 𝑁 ) → ; 1 0 ≤ 𝑁 ) |
| 77 |
33 35 37 76
|
lediv1dd |
⊢ ( ( 𝜑 ∧ 2 ∥ 𝑁 ) → ( ; 1 0 / 2 ) ≤ ( 𝑁 / 2 ) ) |
| 78 |
32 77
|
eqbrtrrid |
⊢ ( ( 𝜑 ∧ 2 ∥ 𝑁 ) → 5 ≤ ( 𝑁 / 2 ) ) |
| 79 |
22 15 16 78
|
lesub1dd |
⊢ ( ( 𝜑 ∧ 2 ∥ 𝑁 ) → ( 5 − 1 ) ≤ ( ( 𝑁 / 2 ) − 1 ) ) |
| 80 |
20 79
|
eqbrtrrid |
⊢ ( ( 𝜑 ∧ 2 ∥ 𝑁 ) → 4 ≤ ( ( 𝑁 / 2 ) − 1 ) ) |
| 81 |
12 14 17 19 80
|
ltletrd |
⊢ ( ( 𝜑 ∧ 2 ∥ 𝑁 ) → 0 < ( ( 𝑁 / 2 ) − 1 ) ) |
| 82 |
11 81
|
jca |
⊢ ( ( 𝜑 ∧ 2 ∥ 𝑁 ) → ( ( ( 𝑁 / 2 ) − 1 ) ∈ ℤ ∧ 0 < ( ( 𝑁 / 2 ) − 1 ) ) ) |
| 83 |
|
elnnz |
⊢ ( ( ( 𝑁 / 2 ) − 1 ) ∈ ℕ ↔ ( ( ( 𝑁 / 2 ) − 1 ) ∈ ℤ ∧ 0 < ( ( 𝑁 / 2 ) − 1 ) ) ) |
| 84 |
82 83
|
sylibr |
⊢ ( ( 𝜑 ∧ 2 ∥ 𝑁 ) → ( ( 𝑁 / 2 ) − 1 ) ∈ ℕ ) |
| 85 |
84 80
|
lcmineqlem22 |
⊢ ( ( 𝜑 ∧ 2 ∥ 𝑁 ) → ( ( 2 ↑ ( ( 2 · ( ( 𝑁 / 2 ) − 1 ) ) + 1 ) ) ≤ ( lcm ‘ ( 1 ... ( ( 2 · ( ( 𝑁 / 2 ) − 1 ) ) + 1 ) ) ) ∧ ( 2 ↑ ( ( 2 · ( ( 𝑁 / 2 ) − 1 ) ) + 2 ) ) ≤ ( lcm ‘ ( 1 ... ( ( 2 · ( ( 𝑁 / 2 ) − 1 ) ) + 2 ) ) ) ) ) |
| 86 |
85
|
simprd |
⊢ ( ( 𝜑 ∧ 2 ∥ 𝑁 ) → ( 2 ↑ ( ( 2 · ( ( 𝑁 / 2 ) − 1 ) ) + 2 ) ) ≤ ( lcm ‘ ( 1 ... ( ( 2 · ( ( 𝑁 / 2 ) − 1 ) ) + 2 ) ) ) ) |
| 87 |
4
|
nncnd |
⊢ ( 𝜑 → 2 ∈ ℂ ) |
| 88 |
1
|
nncnd |
⊢ ( 𝜑 → 𝑁 ∈ ℂ ) |
| 89 |
88
|
halfcld |
⊢ ( 𝜑 → ( 𝑁 / 2 ) ∈ ℂ ) |
| 90 |
87 89
|
muls1d |
⊢ ( 𝜑 → ( 2 · ( ( 𝑁 / 2 ) − 1 ) ) = ( ( 2 · ( 𝑁 / 2 ) ) − 2 ) ) |
| 91 |
90
|
oveq1d |
⊢ ( 𝜑 → ( ( 2 · ( ( 𝑁 / 2 ) − 1 ) ) + 2 ) = ( ( ( 2 · ( 𝑁 / 2 ) ) − 2 ) + 2 ) ) |
| 92 |
87 89
|
mulcld |
⊢ ( 𝜑 → ( 2 · ( 𝑁 / 2 ) ) ∈ ℂ ) |
| 93 |
92 87
|
npcand |
⊢ ( 𝜑 → ( ( ( 2 · ( 𝑁 / 2 ) ) − 2 ) + 2 ) = ( 2 · ( 𝑁 / 2 ) ) ) |
| 94 |
91 93
|
eqtrd |
⊢ ( 𝜑 → ( ( 2 · ( ( 𝑁 / 2 ) − 1 ) ) + 2 ) = ( 2 · ( 𝑁 / 2 ) ) ) |
| 95 |
4
|
nnne0d |
⊢ ( 𝜑 → 2 ≠ 0 ) |
| 96 |
88 87 95
|
divcan2d |
⊢ ( 𝜑 → ( 2 · ( 𝑁 / 2 ) ) = 𝑁 ) |
| 97 |
94 96
|
eqtrd |
⊢ ( 𝜑 → ( ( 2 · ( ( 𝑁 / 2 ) − 1 ) ) + 2 ) = 𝑁 ) |
| 98 |
97
|
oveq2d |
⊢ ( 𝜑 → ( 2 ↑ ( ( 2 · ( ( 𝑁 / 2 ) − 1 ) ) + 2 ) ) = ( 2 ↑ 𝑁 ) ) |
| 99 |
97
|
oveq2d |
⊢ ( 𝜑 → ( 1 ... ( ( 2 · ( ( 𝑁 / 2 ) − 1 ) ) + 2 ) ) = ( 1 ... 𝑁 ) ) |
| 100 |
99
|
fveq2d |
⊢ ( 𝜑 → ( lcm ‘ ( 1 ... ( ( 2 · ( ( 𝑁 / 2 ) − 1 ) ) + 2 ) ) ) = ( lcm ‘ ( 1 ... 𝑁 ) ) ) |
| 101 |
98 100
|
breq12d |
⊢ ( 𝜑 → ( ( 2 ↑ ( ( 2 · ( ( 𝑁 / 2 ) − 1 ) ) + 2 ) ) ≤ ( lcm ‘ ( 1 ... ( ( 2 · ( ( 𝑁 / 2 ) − 1 ) ) + 2 ) ) ) ↔ ( 2 ↑ 𝑁 ) ≤ ( lcm ‘ ( 1 ... 𝑁 ) ) ) ) |
| 102 |
101
|
adantr |
⊢ ( ( 𝜑 ∧ 2 ∥ 𝑁 ) → ( ( 2 ↑ ( ( 2 · ( ( 𝑁 / 2 ) − 1 ) ) + 2 ) ) ≤ ( lcm ‘ ( 1 ... ( ( 2 · ( ( 𝑁 / 2 ) − 1 ) ) + 2 ) ) ) ↔ ( 2 ↑ 𝑁 ) ≤ ( lcm ‘ ( 1 ... 𝑁 ) ) ) ) |
| 103 |
86 102
|
mpbid |
⊢ ( ( 𝜑 ∧ 2 ∥ 𝑁 ) → ( 2 ↑ 𝑁 ) ≤ ( lcm ‘ ( 1 ... 𝑁 ) ) ) |
| 104 |
|
oddm1even |
⊢ ( 𝑁 ∈ ℤ → ( ¬ 2 ∥ 𝑁 ↔ 2 ∥ ( 𝑁 − 1 ) ) ) |
| 105 |
70 104
|
syl |
⊢ ( 𝜑 → ( ¬ 2 ∥ 𝑁 ↔ 2 ∥ ( 𝑁 − 1 ) ) ) |
| 106 |
105
|
biimpa |
⊢ ( ( 𝜑 ∧ ¬ 2 ∥ 𝑁 ) → 2 ∥ ( 𝑁 − 1 ) ) |
| 107 |
3
|
a1i |
⊢ ( ( 𝜑 ∧ ¬ 2 ∥ 𝑁 ) → 2 ∈ ℕ ) |
| 108 |
|
1zzd |
⊢ ( 𝜑 → 1 ∈ ℤ ) |
| 109 |
70 108
|
zsubcld |
⊢ ( 𝜑 → ( 𝑁 − 1 ) ∈ ℤ ) |
| 110 |
|
0red |
⊢ ( 𝜑 → 0 ∈ ℝ ) |
| 111 |
48
|
a1i |
⊢ ( 𝜑 → 8 ∈ ℝ ) |
| 112 |
|
1red |
⊢ ( 𝜑 → 1 ∈ ℝ ) |
| 113 |
34 112
|
resubcld |
⊢ ( 𝜑 → ( 𝑁 − 1 ) ∈ ℝ ) |
| 114 |
|
8pos |
⊢ 0 < 8 |
| 115 |
114
|
a1i |
⊢ ( 𝜑 → 0 < 8 ) |
| 116 |
40 34 112 2
|
lesub1dd |
⊢ ( 𝜑 → ( 9 − 1 ) ≤ ( 𝑁 − 1 ) ) |
| 117 |
58 116
|
eqbrtrrid |
⊢ ( 𝜑 → 8 ≤ ( 𝑁 − 1 ) ) |
| 118 |
110 111 113 115 117
|
ltletrd |
⊢ ( 𝜑 → 0 < ( 𝑁 − 1 ) ) |
| 119 |
109 118
|
jca |
⊢ ( 𝜑 → ( ( 𝑁 − 1 ) ∈ ℤ ∧ 0 < ( 𝑁 − 1 ) ) ) |
| 120 |
|
elnnz |
⊢ ( ( 𝑁 − 1 ) ∈ ℕ ↔ ( ( 𝑁 − 1 ) ∈ ℤ ∧ 0 < ( 𝑁 − 1 ) ) ) |
| 121 |
119 120
|
sylibr |
⊢ ( 𝜑 → ( 𝑁 − 1 ) ∈ ℕ ) |
| 122 |
121
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 2 ∥ 𝑁 ) → ( 𝑁 − 1 ) ∈ ℕ ) |
| 123 |
107 122
|
nndivdvdsd |
⊢ ( ( 𝜑 ∧ ¬ 2 ∥ 𝑁 ) → ( 2 ∥ ( 𝑁 − 1 ) ↔ ( ( 𝑁 − 1 ) / 2 ) ∈ ℕ ) ) |
| 124 |
106 123
|
mpbid |
⊢ ( ( 𝜑 ∧ ¬ 2 ∥ 𝑁 ) → ( ( 𝑁 − 1 ) / 2 ) ∈ ℕ ) |
| 125 |
44 23
|
mulcomi |
⊢ ( 4 · 2 ) = ( 2 · 4 ) |
| 126 |
125 46
|
eqtr3i |
⊢ ( 2 · 4 ) = 8 |
| 127 |
126 50
|
mpbir |
⊢ ( 8 / 2 ) = 4 |
| 128 |
4
|
nnrpd |
⊢ ( 𝜑 → 2 ∈ ℝ+ ) |
| 129 |
111 113 128 117
|
lediv1dd |
⊢ ( 𝜑 → ( 8 / 2 ) ≤ ( ( 𝑁 − 1 ) / 2 ) ) |
| 130 |
127 129
|
eqbrtrrid |
⊢ ( 𝜑 → 4 ≤ ( ( 𝑁 − 1 ) / 2 ) ) |
| 131 |
130
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 2 ∥ 𝑁 ) → 4 ≤ ( ( 𝑁 − 1 ) / 2 ) ) |
| 132 |
124 131
|
lcmineqlem22 |
⊢ ( ( 𝜑 ∧ ¬ 2 ∥ 𝑁 ) → ( ( 2 ↑ ( ( 2 · ( ( 𝑁 − 1 ) / 2 ) ) + 1 ) ) ≤ ( lcm ‘ ( 1 ... ( ( 2 · ( ( 𝑁 − 1 ) / 2 ) ) + 1 ) ) ) ∧ ( 2 ↑ ( ( 2 · ( ( 𝑁 − 1 ) / 2 ) ) + 2 ) ) ≤ ( lcm ‘ ( 1 ... ( ( 2 · ( ( 𝑁 − 1 ) / 2 ) ) + 2 ) ) ) ) ) |
| 133 |
132
|
simpld |
⊢ ( ( 𝜑 ∧ ¬ 2 ∥ 𝑁 ) → ( 2 ↑ ( ( 2 · ( ( 𝑁 − 1 ) / 2 ) ) + 1 ) ) ≤ ( lcm ‘ ( 1 ... ( ( 2 · ( ( 𝑁 − 1 ) / 2 ) ) + 1 ) ) ) ) |
| 134 |
|
1cnd |
⊢ ( 𝜑 → 1 ∈ ℂ ) |
| 135 |
88 134
|
subcld |
⊢ ( 𝜑 → ( 𝑁 − 1 ) ∈ ℂ ) |
| 136 |
135 87 95
|
divcan2d |
⊢ ( 𝜑 → ( 2 · ( ( 𝑁 − 1 ) / 2 ) ) = ( 𝑁 − 1 ) ) |
| 137 |
136
|
oveq1d |
⊢ ( 𝜑 → ( ( 2 · ( ( 𝑁 − 1 ) / 2 ) ) + 1 ) = ( ( 𝑁 − 1 ) + 1 ) ) |
| 138 |
88 134
|
npcand |
⊢ ( 𝜑 → ( ( 𝑁 − 1 ) + 1 ) = 𝑁 ) |
| 139 |
137 138
|
eqtrd |
⊢ ( 𝜑 → ( ( 2 · ( ( 𝑁 − 1 ) / 2 ) ) + 1 ) = 𝑁 ) |
| 140 |
139
|
oveq2d |
⊢ ( 𝜑 → ( 2 ↑ ( ( 2 · ( ( 𝑁 − 1 ) / 2 ) ) + 1 ) ) = ( 2 ↑ 𝑁 ) ) |
| 141 |
139
|
oveq2d |
⊢ ( 𝜑 → ( 1 ... ( ( 2 · ( ( 𝑁 − 1 ) / 2 ) ) + 1 ) ) = ( 1 ... 𝑁 ) ) |
| 142 |
141
|
fveq2d |
⊢ ( 𝜑 → ( lcm ‘ ( 1 ... ( ( 2 · ( ( 𝑁 − 1 ) / 2 ) ) + 1 ) ) ) = ( lcm ‘ ( 1 ... 𝑁 ) ) ) |
| 143 |
140 142
|
breq12d |
⊢ ( 𝜑 → ( ( 2 ↑ ( ( 2 · ( ( 𝑁 − 1 ) / 2 ) ) + 1 ) ) ≤ ( lcm ‘ ( 1 ... ( ( 2 · ( ( 𝑁 − 1 ) / 2 ) ) + 1 ) ) ) ↔ ( 2 ↑ 𝑁 ) ≤ ( lcm ‘ ( 1 ... 𝑁 ) ) ) ) |
| 144 |
143
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 2 ∥ 𝑁 ) → ( ( 2 ↑ ( ( 2 · ( ( 𝑁 − 1 ) / 2 ) ) + 1 ) ) ≤ ( lcm ‘ ( 1 ... ( ( 2 · ( ( 𝑁 − 1 ) / 2 ) ) + 1 ) ) ) ↔ ( 2 ↑ 𝑁 ) ≤ ( lcm ‘ ( 1 ... 𝑁 ) ) ) ) |
| 145 |
133 144
|
mpbid |
⊢ ( ( 𝜑 ∧ ¬ 2 ∥ 𝑁 ) → ( 2 ↑ 𝑁 ) ≤ ( lcm ‘ ( 1 ... 𝑁 ) ) ) |
| 146 |
103 145
|
pm2.61dan |
⊢ ( 𝜑 → ( 2 ↑ 𝑁 ) ≤ ( lcm ‘ ( 1 ... 𝑁 ) ) ) |