| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lcmineqlem.1 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
| 2 |
|
lcmineqlem.2 |
⊢ ( 𝜑 → 7 ≤ 𝑁 ) |
| 3 |
|
7re |
⊢ 7 ∈ ℝ |
| 4 |
3
|
a1i |
⊢ ( 𝜑 → 7 ∈ ℝ ) |
| 5 |
1
|
nnred |
⊢ ( 𝜑 → 𝑁 ∈ ℝ ) |
| 6 |
4 5
|
leloed |
⊢ ( 𝜑 → ( 7 ≤ 𝑁 ↔ ( 7 < 𝑁 ∨ 7 = 𝑁 ) ) ) |
| 7 |
1
|
nnzd |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
| 8 |
|
7nn |
⊢ 7 ∈ ℕ |
| 9 |
8
|
nnzi |
⊢ 7 ∈ ℤ |
| 10 |
|
zltp1le |
⊢ ( ( 7 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 7 < 𝑁 ↔ ( 7 + 1 ) ≤ 𝑁 ) ) |
| 11 |
9 10
|
mpan |
⊢ ( 𝑁 ∈ ℤ → ( 7 < 𝑁 ↔ ( 7 + 1 ) ≤ 𝑁 ) ) |
| 12 |
7 11
|
syl |
⊢ ( 𝜑 → ( 7 < 𝑁 ↔ ( 7 + 1 ) ≤ 𝑁 ) ) |
| 13 |
|
7p1e8 |
⊢ ( 7 + 1 ) = 8 |
| 14 |
13
|
breq1i |
⊢ ( ( 7 + 1 ) ≤ 𝑁 ↔ 8 ≤ 𝑁 ) |
| 15 |
12 14
|
bitrdi |
⊢ ( 𝜑 → ( 7 < 𝑁 ↔ 8 ≤ 𝑁 ) ) |
| 16 |
|
8re |
⊢ 8 ∈ ℝ |
| 17 |
16
|
a1i |
⊢ ( 𝜑 → 8 ∈ ℝ ) |
| 18 |
17 5
|
leloed |
⊢ ( 𝜑 → ( 8 ≤ 𝑁 ↔ ( 8 < 𝑁 ∨ 8 = 𝑁 ) ) ) |
| 19 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 8 < 𝑁 ) → 𝑁 ∈ ℕ ) |
| 20 |
|
8p1e9 |
⊢ ( 8 + 1 ) = 9 |
| 21 |
|
8nn |
⊢ 8 ∈ ℕ |
| 22 |
21
|
nnzi |
⊢ 8 ∈ ℤ |
| 23 |
|
zltp1le |
⊢ ( ( 8 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 8 < 𝑁 ↔ ( 8 + 1 ) ≤ 𝑁 ) ) |
| 24 |
22 23
|
mpan |
⊢ ( 𝑁 ∈ ℤ → ( 8 < 𝑁 ↔ ( 8 + 1 ) ≤ 𝑁 ) ) |
| 25 |
7 24
|
syl |
⊢ ( 𝜑 → ( 8 < 𝑁 ↔ ( 8 + 1 ) ≤ 𝑁 ) ) |
| 26 |
25
|
biimpd |
⊢ ( 𝜑 → ( 8 < 𝑁 → ( 8 + 1 ) ≤ 𝑁 ) ) |
| 27 |
26
|
imp |
⊢ ( ( 𝜑 ∧ 8 < 𝑁 ) → ( 8 + 1 ) ≤ 𝑁 ) |
| 28 |
20 27
|
eqbrtrrid |
⊢ ( ( 𝜑 ∧ 8 < 𝑁 ) → 9 ≤ 𝑁 ) |
| 29 |
19 28
|
lcmineqlem23 |
⊢ ( ( 𝜑 ∧ 8 < 𝑁 ) → ( 2 ↑ 𝑁 ) ≤ ( lcm ‘ ( 1 ... 𝑁 ) ) ) |
| 30 |
29
|
ex |
⊢ ( 𝜑 → ( 8 < 𝑁 → ( 2 ↑ 𝑁 ) ≤ ( lcm ‘ ( 1 ... 𝑁 ) ) ) ) |
| 31 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
| 32 |
|
8nn0 |
⊢ 8 ∈ ℕ0 |
| 33 |
|
5nn0 |
⊢ 5 ∈ ℕ0 |
| 34 |
|
4nn0 |
⊢ 4 ∈ ℕ0 |
| 35 |
|
6nn0 |
⊢ 6 ∈ ℕ0 |
| 36 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
| 37 |
|
2lt8 |
⊢ 2 < 8 |
| 38 |
|
5lt10 |
⊢ 5 < ; 1 0 |
| 39 |
|
6lt10 |
⊢ 6 < ; 1 0 |
| 40 |
31 32 33 34 35 36 37 38 39
|
3decltc |
⊢ ; ; 2 5 6 < ; ; 8 4 0 |
| 41 |
|
5nn |
⊢ 5 ∈ ℕ |
| 42 |
31 41
|
decnncl |
⊢ ; 2 5 ∈ ℕ |
| 43 |
42
|
nnnn0i |
⊢ ; 2 5 ∈ ℕ0 |
| 44 |
|
6nn |
⊢ 6 ∈ ℕ |
| 45 |
43 44
|
decnncl |
⊢ ; ; 2 5 6 ∈ ℕ |
| 46 |
45
|
nnrei |
⊢ ; ; 2 5 6 ∈ ℝ |
| 47 |
|
4nn |
⊢ 4 ∈ ℕ |
| 48 |
32 47
|
decnncl |
⊢ ; 8 4 ∈ ℕ |
| 49 |
48
|
decnncl2 |
⊢ ; ; 8 4 0 ∈ ℕ |
| 50 |
49
|
nnrei |
⊢ ; ; 8 4 0 ∈ ℝ |
| 51 |
46 50
|
ltlei |
⊢ ( ; ; 2 5 6 < ; ; 8 4 0 → ; ; 2 5 6 ≤ ; ; 8 4 0 ) |
| 52 |
40 51
|
ax-mp |
⊢ ; ; 2 5 6 ≤ ; ; 8 4 0 |
| 53 |
|
2exp8 |
⊢ ( 2 ↑ 8 ) = ; ; 2 5 6 |
| 54 |
|
oveq2 |
⊢ ( 8 = 𝑁 → ( 2 ↑ 8 ) = ( 2 ↑ 𝑁 ) ) |
| 55 |
53 54
|
eqtr3id |
⊢ ( 8 = 𝑁 → ; ; 2 5 6 = ( 2 ↑ 𝑁 ) ) |
| 56 |
|
lcm8un |
⊢ ( lcm ‘ ( 1 ... 8 ) ) = ; ; 8 4 0 |
| 57 |
|
oveq2 |
⊢ ( 8 = 𝑁 → ( 1 ... 8 ) = ( 1 ... 𝑁 ) ) |
| 58 |
57
|
fveq2d |
⊢ ( 8 = 𝑁 → ( lcm ‘ ( 1 ... 8 ) ) = ( lcm ‘ ( 1 ... 𝑁 ) ) ) |
| 59 |
56 58
|
eqtr3id |
⊢ ( 8 = 𝑁 → ; ; 8 4 0 = ( lcm ‘ ( 1 ... 𝑁 ) ) ) |
| 60 |
55 59
|
breq12d |
⊢ ( 8 = 𝑁 → ( ; ; 2 5 6 ≤ ; ; 8 4 0 ↔ ( 2 ↑ 𝑁 ) ≤ ( lcm ‘ ( 1 ... 𝑁 ) ) ) ) |
| 61 |
52 60
|
mpbii |
⊢ ( 8 = 𝑁 → ( 2 ↑ 𝑁 ) ≤ ( lcm ‘ ( 1 ... 𝑁 ) ) ) |
| 62 |
61
|
adantl |
⊢ ( ( 𝜑 ∧ 8 = 𝑁 ) → ( 2 ↑ 𝑁 ) ≤ ( lcm ‘ ( 1 ... 𝑁 ) ) ) |
| 63 |
62
|
ex |
⊢ ( 𝜑 → ( 8 = 𝑁 → ( 2 ↑ 𝑁 ) ≤ ( lcm ‘ ( 1 ... 𝑁 ) ) ) ) |
| 64 |
30 63
|
jaod |
⊢ ( 𝜑 → ( ( 8 < 𝑁 ∨ 8 = 𝑁 ) → ( 2 ↑ 𝑁 ) ≤ ( lcm ‘ ( 1 ... 𝑁 ) ) ) ) |
| 65 |
18 64
|
sylbid |
⊢ ( 𝜑 → ( 8 ≤ 𝑁 → ( 2 ↑ 𝑁 ) ≤ ( lcm ‘ ( 1 ... 𝑁 ) ) ) ) |
| 66 |
15 65
|
sylbid |
⊢ ( 𝜑 → ( 7 < 𝑁 → ( 2 ↑ 𝑁 ) ≤ ( lcm ‘ ( 1 ... 𝑁 ) ) ) ) |
| 67 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
| 68 |
|
1lt4 |
⊢ 1 < 4 |
| 69 |
|
2lt10 |
⊢ 2 < ; 1 0 |
| 70 |
|
8lt10 |
⊢ 8 < ; 1 0 |
| 71 |
67 34 31 31 32 36 68 69 70
|
3decltc |
⊢ ; ; 1 2 8 < ; ; 4 2 0 |
| 72 |
|
2nn |
⊢ 2 ∈ ℕ |
| 73 |
67 72
|
decnncl |
⊢ ; 1 2 ∈ ℕ |
| 74 |
73
|
nnnn0i |
⊢ ; 1 2 ∈ ℕ0 |
| 75 |
74 21
|
decnncl |
⊢ ; ; 1 2 8 ∈ ℕ |
| 76 |
75
|
nnrei |
⊢ ; ; 1 2 8 ∈ ℝ |
| 77 |
34 72
|
decnncl |
⊢ ; 4 2 ∈ ℕ |
| 78 |
77
|
decnncl2 |
⊢ ; ; 4 2 0 ∈ ℕ |
| 79 |
78
|
nnrei |
⊢ ; ; 4 2 0 ∈ ℝ |
| 80 |
76 79
|
ltlei |
⊢ ( ; ; 1 2 8 < ; ; 4 2 0 → ; ; 1 2 8 ≤ ; ; 4 2 0 ) |
| 81 |
71 80
|
ax-mp |
⊢ ; ; 1 2 8 ≤ ; ; 4 2 0 |
| 82 |
|
2exp7 |
⊢ ( 2 ↑ 7 ) = ; ; 1 2 8 |
| 83 |
|
oveq2 |
⊢ ( 7 = 𝑁 → ( 2 ↑ 7 ) = ( 2 ↑ 𝑁 ) ) |
| 84 |
82 83
|
eqtr3id |
⊢ ( 7 = 𝑁 → ; ; 1 2 8 = ( 2 ↑ 𝑁 ) ) |
| 85 |
|
lcm7un |
⊢ ( lcm ‘ ( 1 ... 7 ) ) = ; ; 4 2 0 |
| 86 |
|
oveq2 |
⊢ ( 7 = 𝑁 → ( 1 ... 7 ) = ( 1 ... 𝑁 ) ) |
| 87 |
86
|
fveq2d |
⊢ ( 7 = 𝑁 → ( lcm ‘ ( 1 ... 7 ) ) = ( lcm ‘ ( 1 ... 𝑁 ) ) ) |
| 88 |
85 87
|
eqtr3id |
⊢ ( 7 = 𝑁 → ; ; 4 2 0 = ( lcm ‘ ( 1 ... 𝑁 ) ) ) |
| 89 |
84 88
|
breq12d |
⊢ ( 7 = 𝑁 → ( ; ; 1 2 8 ≤ ; ; 4 2 0 ↔ ( 2 ↑ 𝑁 ) ≤ ( lcm ‘ ( 1 ... 𝑁 ) ) ) ) |
| 90 |
81 89
|
mpbii |
⊢ ( 7 = 𝑁 → ( 2 ↑ 𝑁 ) ≤ ( lcm ‘ ( 1 ... 𝑁 ) ) ) |
| 91 |
90
|
a1i |
⊢ ( 𝜑 → ( 7 = 𝑁 → ( 2 ↑ 𝑁 ) ≤ ( lcm ‘ ( 1 ... 𝑁 ) ) ) ) |
| 92 |
66 91
|
jaod |
⊢ ( 𝜑 → ( ( 7 < 𝑁 ∨ 7 = 𝑁 ) → ( 2 ↑ 𝑁 ) ≤ ( lcm ‘ ( 1 ... 𝑁 ) ) ) ) |
| 93 |
6 92
|
sylbid |
⊢ ( 𝜑 → ( 7 ≤ 𝑁 → ( 2 ↑ 𝑁 ) ≤ ( lcm ‘ ( 1 ... 𝑁 ) ) ) ) |
| 94 |
2 93
|
mpd |
⊢ ( 𝜑 → ( 2 ↑ 𝑁 ) ≤ ( lcm ‘ ( 1 ... 𝑁 ) ) ) |