Metamath Proof Explorer


Theorem lcmineqlem

Description: The least common multiple inequality lemma, a central result for future use. Theorem 3.1 from https://www3.nd.edu/%7eandyp/notes/AKS.pdf (Contributed by metakunt, 16-May-2024)

Ref Expression
Hypotheses lcmineqlem.1 ( 𝜑𝑁 ∈ ℕ )
lcmineqlem.2 ( 𝜑 → 7 ≤ 𝑁 )
Assertion lcmineqlem ( 𝜑 → ( 2 ↑ 𝑁 ) ≤ ( lcm ‘ ( 1 ... 𝑁 ) ) )

Proof

Step Hyp Ref Expression
1 lcmineqlem.1 ( 𝜑𝑁 ∈ ℕ )
2 lcmineqlem.2 ( 𝜑 → 7 ≤ 𝑁 )
3 7re 7 ∈ ℝ
4 3 a1i ( 𝜑 → 7 ∈ ℝ )
5 1 nnred ( 𝜑𝑁 ∈ ℝ )
6 4 5 leloed ( 𝜑 → ( 7 ≤ 𝑁 ↔ ( 7 < 𝑁 ∨ 7 = 𝑁 ) ) )
7 1 nnzd ( 𝜑𝑁 ∈ ℤ )
8 7nn 7 ∈ ℕ
9 8 nnzi 7 ∈ ℤ
10 zltp1le ( ( 7 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 7 < 𝑁 ↔ ( 7 + 1 ) ≤ 𝑁 ) )
11 9 10 mpan ( 𝑁 ∈ ℤ → ( 7 < 𝑁 ↔ ( 7 + 1 ) ≤ 𝑁 ) )
12 7 11 syl ( 𝜑 → ( 7 < 𝑁 ↔ ( 7 + 1 ) ≤ 𝑁 ) )
13 7p1e8 ( 7 + 1 ) = 8
14 13 breq1i ( ( 7 + 1 ) ≤ 𝑁 ↔ 8 ≤ 𝑁 )
15 12 14 bitrdi ( 𝜑 → ( 7 < 𝑁 ↔ 8 ≤ 𝑁 ) )
16 8re 8 ∈ ℝ
17 16 a1i ( 𝜑 → 8 ∈ ℝ )
18 17 5 leloed ( 𝜑 → ( 8 ≤ 𝑁 ↔ ( 8 < 𝑁 ∨ 8 = 𝑁 ) ) )
19 1 adantr ( ( 𝜑 ∧ 8 < 𝑁 ) → 𝑁 ∈ ℕ )
20 8p1e9 ( 8 + 1 ) = 9
21 8nn 8 ∈ ℕ
22 21 nnzi 8 ∈ ℤ
23 zltp1le ( ( 8 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 8 < 𝑁 ↔ ( 8 + 1 ) ≤ 𝑁 ) )
24 22 23 mpan ( 𝑁 ∈ ℤ → ( 8 < 𝑁 ↔ ( 8 + 1 ) ≤ 𝑁 ) )
25 7 24 syl ( 𝜑 → ( 8 < 𝑁 ↔ ( 8 + 1 ) ≤ 𝑁 ) )
26 25 biimpd ( 𝜑 → ( 8 < 𝑁 → ( 8 + 1 ) ≤ 𝑁 ) )
27 26 imp ( ( 𝜑 ∧ 8 < 𝑁 ) → ( 8 + 1 ) ≤ 𝑁 )
28 20 27 eqbrtrrid ( ( 𝜑 ∧ 8 < 𝑁 ) → 9 ≤ 𝑁 )
29 19 28 lcmineqlem23 ( ( 𝜑 ∧ 8 < 𝑁 ) → ( 2 ↑ 𝑁 ) ≤ ( lcm ‘ ( 1 ... 𝑁 ) ) )
30 29 ex ( 𝜑 → ( 8 < 𝑁 → ( 2 ↑ 𝑁 ) ≤ ( lcm ‘ ( 1 ... 𝑁 ) ) ) )
31 2nn0 2 ∈ ℕ0
32 8nn0 8 ∈ ℕ0
33 5nn0 5 ∈ ℕ0
34 4nn0 4 ∈ ℕ0
35 6nn0 6 ∈ ℕ0
36 0nn0 0 ∈ ℕ0
37 2lt8 2 < 8
38 5lt10 5 < 1 0
39 6lt10 6 < 1 0
40 31 32 33 34 35 36 37 38 39 3decltc 2 5 6 < 8 4 0
41 5nn 5 ∈ ℕ
42 31 41 decnncl 2 5 ∈ ℕ
43 42 nnnn0i 2 5 ∈ ℕ0
44 6nn 6 ∈ ℕ
45 43 44 decnncl 2 5 6 ∈ ℕ
46 45 nnrei 2 5 6 ∈ ℝ
47 4nn 4 ∈ ℕ
48 32 47 decnncl 8 4 ∈ ℕ
49 48 decnncl2 8 4 0 ∈ ℕ
50 49 nnrei 8 4 0 ∈ ℝ
51 46 50 ltlei ( 2 5 6 < 8 4 0 → 2 5 6 ≤ 8 4 0 )
52 40 51 ax-mp 2 5 6 ≤ 8 4 0
53 2exp8 ( 2 ↑ 8 ) = 2 5 6
54 oveq2 ( 8 = 𝑁 → ( 2 ↑ 8 ) = ( 2 ↑ 𝑁 ) )
55 53 54 eqtr3id ( 8 = 𝑁 2 5 6 = ( 2 ↑ 𝑁 ) )
56 lcm8un ( lcm ‘ ( 1 ... 8 ) ) = 8 4 0
57 oveq2 ( 8 = 𝑁 → ( 1 ... 8 ) = ( 1 ... 𝑁 ) )
58 57 fveq2d ( 8 = 𝑁 → ( lcm ‘ ( 1 ... 8 ) ) = ( lcm ‘ ( 1 ... 𝑁 ) ) )
59 56 58 eqtr3id ( 8 = 𝑁 8 4 0 = ( lcm ‘ ( 1 ... 𝑁 ) ) )
60 55 59 breq12d ( 8 = 𝑁 → ( 2 5 6 ≤ 8 4 0 ↔ ( 2 ↑ 𝑁 ) ≤ ( lcm ‘ ( 1 ... 𝑁 ) ) ) )
61 52 60 mpbii ( 8 = 𝑁 → ( 2 ↑ 𝑁 ) ≤ ( lcm ‘ ( 1 ... 𝑁 ) ) )
62 61 adantl ( ( 𝜑 ∧ 8 = 𝑁 ) → ( 2 ↑ 𝑁 ) ≤ ( lcm ‘ ( 1 ... 𝑁 ) ) )
63 62 ex ( 𝜑 → ( 8 = 𝑁 → ( 2 ↑ 𝑁 ) ≤ ( lcm ‘ ( 1 ... 𝑁 ) ) ) )
64 30 63 jaod ( 𝜑 → ( ( 8 < 𝑁 ∨ 8 = 𝑁 ) → ( 2 ↑ 𝑁 ) ≤ ( lcm ‘ ( 1 ... 𝑁 ) ) ) )
65 18 64 sylbid ( 𝜑 → ( 8 ≤ 𝑁 → ( 2 ↑ 𝑁 ) ≤ ( lcm ‘ ( 1 ... 𝑁 ) ) ) )
66 15 65 sylbid ( 𝜑 → ( 7 < 𝑁 → ( 2 ↑ 𝑁 ) ≤ ( lcm ‘ ( 1 ... 𝑁 ) ) ) )
67 1nn0 1 ∈ ℕ0
68 1lt4 1 < 4
69 2lt10 2 < 1 0
70 8lt10 8 < 1 0
71 67 34 31 31 32 36 68 69 70 3decltc 1 2 8 < 4 2 0
72 2nn 2 ∈ ℕ
73 67 72 decnncl 1 2 ∈ ℕ
74 73 nnnn0i 1 2 ∈ ℕ0
75 74 21 decnncl 1 2 8 ∈ ℕ
76 75 nnrei 1 2 8 ∈ ℝ
77 34 72 decnncl 4 2 ∈ ℕ
78 77 decnncl2 4 2 0 ∈ ℕ
79 78 nnrei 4 2 0 ∈ ℝ
80 76 79 ltlei ( 1 2 8 < 4 2 0 → 1 2 8 ≤ 4 2 0 )
81 71 80 ax-mp 1 2 8 ≤ 4 2 0
82 2exp7 ( 2 ↑ 7 ) = 1 2 8
83 oveq2 ( 7 = 𝑁 → ( 2 ↑ 7 ) = ( 2 ↑ 𝑁 ) )
84 82 83 eqtr3id ( 7 = 𝑁 1 2 8 = ( 2 ↑ 𝑁 ) )
85 lcm7un ( lcm ‘ ( 1 ... 7 ) ) = 4 2 0
86 oveq2 ( 7 = 𝑁 → ( 1 ... 7 ) = ( 1 ... 𝑁 ) )
87 86 fveq2d ( 7 = 𝑁 → ( lcm ‘ ( 1 ... 7 ) ) = ( lcm ‘ ( 1 ... 𝑁 ) ) )
88 85 87 eqtr3id ( 7 = 𝑁 4 2 0 = ( lcm ‘ ( 1 ... 𝑁 ) ) )
89 84 88 breq12d ( 7 = 𝑁 → ( 1 2 8 ≤ 4 2 0 ↔ ( 2 ↑ 𝑁 ) ≤ ( lcm ‘ ( 1 ... 𝑁 ) ) ) )
90 81 89 mpbii ( 7 = 𝑁 → ( 2 ↑ 𝑁 ) ≤ ( lcm ‘ ( 1 ... 𝑁 ) ) )
91 90 a1i ( 𝜑 → ( 7 = 𝑁 → ( 2 ↑ 𝑁 ) ≤ ( lcm ‘ ( 1 ... 𝑁 ) ) ) )
92 66 91 jaod ( 𝜑 → ( ( 7 < 𝑁 ∨ 7 = 𝑁 ) → ( 2 ↑ 𝑁 ) ≤ ( lcm ‘ ( 1 ... 𝑁 ) ) ) )
93 6 92 sylbid ( 𝜑 → ( 7 ≤ 𝑁 → ( 2 ↑ 𝑁 ) ≤ ( lcm ‘ ( 1 ... 𝑁 ) ) ) )
94 2 93 mpd ( 𝜑 → ( 2 ↑ 𝑁 ) ≤ ( lcm ‘ ( 1 ... 𝑁 ) ) )