Metamath Proof Explorer


Theorem lcmineqlem

Description: The least common multiple inequality lemma, a central result for future use. Theorem 3.1 from https://www3.nd.edu/%7eandyp/notes/AKS.pdf (Contributed by metakunt, 16-May-2024)

Ref Expression
Hypotheses lcmineqlem.1 φ N
lcmineqlem.2 φ 7 N
Assertion lcmineqlem φ 2 N lcm _ 1 N

Proof

Step Hyp Ref Expression
1 lcmineqlem.1 φ N
2 lcmineqlem.2 φ 7 N
3 7re 7
4 3 a1i φ 7
5 1 nnred φ N
6 4 5 leloed φ 7 N 7 < N 7 = N
7 1 nnzd φ N
8 7nn 7
9 8 nnzi 7
10 zltp1le 7 N 7 < N 7 + 1 N
11 9 10 mpan N 7 < N 7 + 1 N
12 7 11 syl φ 7 < N 7 + 1 N
13 7p1e8 7 + 1 = 8
14 13 breq1i 7 + 1 N 8 N
15 12 14 bitrdi φ 7 < N 8 N
16 8re 8
17 16 a1i φ 8
18 17 5 leloed φ 8 N 8 < N 8 = N
19 1 adantr φ 8 < N N
20 8p1e9 8 + 1 = 9
21 8nn 8
22 21 nnzi 8
23 zltp1le 8 N 8 < N 8 + 1 N
24 22 23 mpan N 8 < N 8 + 1 N
25 7 24 syl φ 8 < N 8 + 1 N
26 25 biimpd φ 8 < N 8 + 1 N
27 26 imp φ 8 < N 8 + 1 N
28 20 27 eqbrtrrid φ 8 < N 9 N
29 19 28 lcmineqlem23 φ 8 < N 2 N lcm _ 1 N
30 29 ex φ 8 < N 2 N lcm _ 1 N
31 2nn0 2 0
32 8nn0 8 0
33 5nn0 5 0
34 4nn0 4 0
35 6nn0 6 0
36 0nn0 0 0
37 2lt8 2 < 8
38 5lt10 5 < 10
39 6lt10 6 < 10
40 31 32 33 34 35 36 37 38 39 3decltc 256 < 840
41 5nn 5
42 31 41 decnncl 25
43 42 nnnn0i 25 0
44 6nn 6
45 43 44 decnncl 256
46 45 nnrei 256
47 4nn 4
48 32 47 decnncl 84
49 48 decnncl2 840
50 49 nnrei 840
51 46 50 ltlei 256 < 840 256 840
52 40 51 ax-mp 256 840
53 2exp8 2 8 = 256
54 oveq2 8 = N 2 8 = 2 N
55 53 54 eqtr3id 8 = N 256 = 2 N
56 lcm8un lcm _ 1 8 = 840
57 oveq2 8 = N 1 8 = 1 N
58 57 fveq2d 8 = N lcm _ 1 8 = lcm _ 1 N
59 56 58 eqtr3id 8 = N 840 = lcm _ 1 N
60 55 59 breq12d 8 = N 256 840 2 N lcm _ 1 N
61 52 60 mpbii 8 = N 2 N lcm _ 1 N
62 61 adantl φ 8 = N 2 N lcm _ 1 N
63 62 ex φ 8 = N 2 N lcm _ 1 N
64 30 63 jaod φ 8 < N 8 = N 2 N lcm _ 1 N
65 18 64 sylbid φ 8 N 2 N lcm _ 1 N
66 15 65 sylbid φ 7 < N 2 N lcm _ 1 N
67 1nn0 1 0
68 1lt4 1 < 4
69 2lt10 2 < 10
70 8lt10 8 < 10
71 67 34 31 31 32 36 68 69 70 3decltc 128 < 420
72 2nn 2
73 67 72 decnncl 12
74 73 nnnn0i 12 0
75 74 21 decnncl 128
76 75 nnrei 128
77 34 72 decnncl 42
78 77 decnncl2 420
79 78 nnrei 420
80 76 79 ltlei 128 < 420 128 420
81 71 80 ax-mp 128 420
82 2exp7 2 7 = 128
83 oveq2 7 = N 2 7 = 2 N
84 82 83 eqtr3id 7 = N 128 = 2 N
85 lcm7un lcm _ 1 7 = 420
86 oveq2 7 = N 1 7 = 1 N
87 86 fveq2d 7 = N lcm _ 1 7 = lcm _ 1 N
88 85 87 eqtr3id 7 = N 420 = lcm _ 1 N
89 84 88 breq12d 7 = N 128 420 2 N lcm _ 1 N
90 81 89 mpbii 7 = N 2 N lcm _ 1 N
91 90 a1i φ 7 = N 2 N lcm _ 1 N
92 66 91 jaod φ 7 < N 7 = N 2 N lcm _ 1 N
93 6 92 sylbid φ 7 N 2 N lcm _ 1 N
94 2 93 mpd φ 2 N lcm _ 1 N