Step |
Hyp |
Ref |
Expression |
1 |
|
lcmineqlem.1 |
|- ( ph -> N e. NN ) |
2 |
|
lcmineqlem.2 |
|- ( ph -> 7 <_ N ) |
3 |
|
7re |
|- 7 e. RR |
4 |
3
|
a1i |
|- ( ph -> 7 e. RR ) |
5 |
1
|
nnred |
|- ( ph -> N e. RR ) |
6 |
4 5
|
leloed |
|- ( ph -> ( 7 <_ N <-> ( 7 < N \/ 7 = N ) ) ) |
7 |
1
|
nnzd |
|- ( ph -> N e. ZZ ) |
8 |
|
7nn |
|- 7 e. NN |
9 |
8
|
nnzi |
|- 7 e. ZZ |
10 |
|
zltp1le |
|- ( ( 7 e. ZZ /\ N e. ZZ ) -> ( 7 < N <-> ( 7 + 1 ) <_ N ) ) |
11 |
9 10
|
mpan |
|- ( N e. ZZ -> ( 7 < N <-> ( 7 + 1 ) <_ N ) ) |
12 |
7 11
|
syl |
|- ( ph -> ( 7 < N <-> ( 7 + 1 ) <_ N ) ) |
13 |
|
7p1e8 |
|- ( 7 + 1 ) = 8 |
14 |
13
|
breq1i |
|- ( ( 7 + 1 ) <_ N <-> 8 <_ N ) |
15 |
12 14
|
bitrdi |
|- ( ph -> ( 7 < N <-> 8 <_ N ) ) |
16 |
|
8re |
|- 8 e. RR |
17 |
16
|
a1i |
|- ( ph -> 8 e. RR ) |
18 |
17 5
|
leloed |
|- ( ph -> ( 8 <_ N <-> ( 8 < N \/ 8 = N ) ) ) |
19 |
1
|
adantr |
|- ( ( ph /\ 8 < N ) -> N e. NN ) |
20 |
|
8p1e9 |
|- ( 8 + 1 ) = 9 |
21 |
|
8nn |
|- 8 e. NN |
22 |
21
|
nnzi |
|- 8 e. ZZ |
23 |
|
zltp1le |
|- ( ( 8 e. ZZ /\ N e. ZZ ) -> ( 8 < N <-> ( 8 + 1 ) <_ N ) ) |
24 |
22 23
|
mpan |
|- ( N e. ZZ -> ( 8 < N <-> ( 8 + 1 ) <_ N ) ) |
25 |
7 24
|
syl |
|- ( ph -> ( 8 < N <-> ( 8 + 1 ) <_ N ) ) |
26 |
25
|
biimpd |
|- ( ph -> ( 8 < N -> ( 8 + 1 ) <_ N ) ) |
27 |
26
|
imp |
|- ( ( ph /\ 8 < N ) -> ( 8 + 1 ) <_ N ) |
28 |
20 27
|
eqbrtrrid |
|- ( ( ph /\ 8 < N ) -> 9 <_ N ) |
29 |
19 28
|
lcmineqlem23 |
|- ( ( ph /\ 8 < N ) -> ( 2 ^ N ) <_ ( _lcm ` ( 1 ... N ) ) ) |
30 |
29
|
ex |
|- ( ph -> ( 8 < N -> ( 2 ^ N ) <_ ( _lcm ` ( 1 ... N ) ) ) ) |
31 |
|
2nn0 |
|- 2 e. NN0 |
32 |
|
8nn0 |
|- 8 e. NN0 |
33 |
|
5nn0 |
|- 5 e. NN0 |
34 |
|
4nn0 |
|- 4 e. NN0 |
35 |
|
6nn0 |
|- 6 e. NN0 |
36 |
|
0nn0 |
|- 0 e. NN0 |
37 |
|
2lt8 |
|- 2 < 8 |
38 |
|
5lt10 |
|- 5 < ; 1 0 |
39 |
|
6lt10 |
|- 6 < ; 1 0 |
40 |
31 32 33 34 35 36 37 38 39
|
3decltc |
|- ; ; 2 5 6 < ; ; 8 4 0 |
41 |
|
5nn |
|- 5 e. NN |
42 |
31 41
|
decnncl |
|- ; 2 5 e. NN |
43 |
42
|
nnnn0i |
|- ; 2 5 e. NN0 |
44 |
|
6nn |
|- 6 e. NN |
45 |
43 44
|
decnncl |
|- ; ; 2 5 6 e. NN |
46 |
45
|
nnrei |
|- ; ; 2 5 6 e. RR |
47 |
|
4nn |
|- 4 e. NN |
48 |
32 47
|
decnncl |
|- ; 8 4 e. NN |
49 |
48
|
decnncl2 |
|- ; ; 8 4 0 e. NN |
50 |
49
|
nnrei |
|- ; ; 8 4 0 e. RR |
51 |
46 50
|
ltlei |
|- ( ; ; 2 5 6 < ; ; 8 4 0 -> ; ; 2 5 6 <_ ; ; 8 4 0 ) |
52 |
40 51
|
ax-mp |
|- ; ; 2 5 6 <_ ; ; 8 4 0 |
53 |
|
2exp8 |
|- ( 2 ^ 8 ) = ; ; 2 5 6 |
54 |
|
oveq2 |
|- ( 8 = N -> ( 2 ^ 8 ) = ( 2 ^ N ) ) |
55 |
53 54
|
eqtr3id |
|- ( 8 = N -> ; ; 2 5 6 = ( 2 ^ N ) ) |
56 |
|
lcm8un |
|- ( _lcm ` ( 1 ... 8 ) ) = ; ; 8 4 0 |
57 |
|
oveq2 |
|- ( 8 = N -> ( 1 ... 8 ) = ( 1 ... N ) ) |
58 |
57
|
fveq2d |
|- ( 8 = N -> ( _lcm ` ( 1 ... 8 ) ) = ( _lcm ` ( 1 ... N ) ) ) |
59 |
56 58
|
eqtr3id |
|- ( 8 = N -> ; ; 8 4 0 = ( _lcm ` ( 1 ... N ) ) ) |
60 |
55 59
|
breq12d |
|- ( 8 = N -> ( ; ; 2 5 6 <_ ; ; 8 4 0 <-> ( 2 ^ N ) <_ ( _lcm ` ( 1 ... N ) ) ) ) |
61 |
52 60
|
mpbii |
|- ( 8 = N -> ( 2 ^ N ) <_ ( _lcm ` ( 1 ... N ) ) ) |
62 |
61
|
adantl |
|- ( ( ph /\ 8 = N ) -> ( 2 ^ N ) <_ ( _lcm ` ( 1 ... N ) ) ) |
63 |
62
|
ex |
|- ( ph -> ( 8 = N -> ( 2 ^ N ) <_ ( _lcm ` ( 1 ... N ) ) ) ) |
64 |
30 63
|
jaod |
|- ( ph -> ( ( 8 < N \/ 8 = N ) -> ( 2 ^ N ) <_ ( _lcm ` ( 1 ... N ) ) ) ) |
65 |
18 64
|
sylbid |
|- ( ph -> ( 8 <_ N -> ( 2 ^ N ) <_ ( _lcm ` ( 1 ... N ) ) ) ) |
66 |
15 65
|
sylbid |
|- ( ph -> ( 7 < N -> ( 2 ^ N ) <_ ( _lcm ` ( 1 ... N ) ) ) ) |
67 |
|
1nn0 |
|- 1 e. NN0 |
68 |
|
1lt4 |
|- 1 < 4 |
69 |
|
2lt10 |
|- 2 < ; 1 0 |
70 |
|
8lt10 |
|- 8 < ; 1 0 |
71 |
67 34 31 31 32 36 68 69 70
|
3decltc |
|- ; ; 1 2 8 < ; ; 4 2 0 |
72 |
|
2nn |
|- 2 e. NN |
73 |
67 72
|
decnncl |
|- ; 1 2 e. NN |
74 |
73
|
nnnn0i |
|- ; 1 2 e. NN0 |
75 |
74 21
|
decnncl |
|- ; ; 1 2 8 e. NN |
76 |
75
|
nnrei |
|- ; ; 1 2 8 e. RR |
77 |
34 72
|
decnncl |
|- ; 4 2 e. NN |
78 |
77
|
decnncl2 |
|- ; ; 4 2 0 e. NN |
79 |
78
|
nnrei |
|- ; ; 4 2 0 e. RR |
80 |
76 79
|
ltlei |
|- ( ; ; 1 2 8 < ; ; 4 2 0 -> ; ; 1 2 8 <_ ; ; 4 2 0 ) |
81 |
71 80
|
ax-mp |
|- ; ; 1 2 8 <_ ; ; 4 2 0 |
82 |
|
2exp7 |
|- ( 2 ^ 7 ) = ; ; 1 2 8 |
83 |
|
oveq2 |
|- ( 7 = N -> ( 2 ^ 7 ) = ( 2 ^ N ) ) |
84 |
82 83
|
eqtr3id |
|- ( 7 = N -> ; ; 1 2 8 = ( 2 ^ N ) ) |
85 |
|
lcm7un |
|- ( _lcm ` ( 1 ... 7 ) ) = ; ; 4 2 0 |
86 |
|
oveq2 |
|- ( 7 = N -> ( 1 ... 7 ) = ( 1 ... N ) ) |
87 |
86
|
fveq2d |
|- ( 7 = N -> ( _lcm ` ( 1 ... 7 ) ) = ( _lcm ` ( 1 ... N ) ) ) |
88 |
85 87
|
eqtr3id |
|- ( 7 = N -> ; ; 4 2 0 = ( _lcm ` ( 1 ... N ) ) ) |
89 |
84 88
|
breq12d |
|- ( 7 = N -> ( ; ; 1 2 8 <_ ; ; 4 2 0 <-> ( 2 ^ N ) <_ ( _lcm ` ( 1 ... N ) ) ) ) |
90 |
81 89
|
mpbii |
|- ( 7 = N -> ( 2 ^ N ) <_ ( _lcm ` ( 1 ... N ) ) ) |
91 |
90
|
a1i |
|- ( ph -> ( 7 = N -> ( 2 ^ N ) <_ ( _lcm ` ( 1 ... N ) ) ) ) |
92 |
66 91
|
jaod |
|- ( ph -> ( ( 7 < N \/ 7 = N ) -> ( 2 ^ N ) <_ ( _lcm ` ( 1 ... N ) ) ) ) |
93 |
6 92
|
sylbid |
|- ( ph -> ( 7 <_ N -> ( 2 ^ N ) <_ ( _lcm ` ( 1 ... N ) ) ) ) |
94 |
2 93
|
mpd |
|- ( ph -> ( 2 ^ N ) <_ ( _lcm ` ( 1 ... N ) ) ) |