Step |
Hyp |
Ref |
Expression |
1 |
|
lcmineqlem23.1 |
|- ( ph -> N e. NN ) |
2 |
|
lcmineqlem23.2 |
|- ( ph -> 9 <_ N ) |
3 |
|
2nn |
|- 2 e. NN |
4 |
3
|
a1i |
|- ( ph -> 2 e. NN ) |
5 |
1 4
|
jca |
|- ( ph -> ( N e. NN /\ 2 e. NN ) ) |
6 |
|
nndivdvds |
|- ( ( N e. NN /\ 2 e. NN ) -> ( 2 || N <-> ( N / 2 ) e. NN ) ) |
7 |
5 6
|
syl |
|- ( ph -> ( 2 || N <-> ( N / 2 ) e. NN ) ) |
8 |
7
|
biimpa |
|- ( ( ph /\ 2 || N ) -> ( N / 2 ) e. NN ) |
9 |
8
|
nnzd |
|- ( ( ph /\ 2 || N ) -> ( N / 2 ) e. ZZ ) |
10 |
|
1zzd |
|- ( ( ph /\ 2 || N ) -> 1 e. ZZ ) |
11 |
9 10
|
zsubcld |
|- ( ( ph /\ 2 || N ) -> ( ( N / 2 ) - 1 ) e. ZZ ) |
12 |
|
0red |
|- ( ( ph /\ 2 || N ) -> 0 e. RR ) |
13 |
|
4re |
|- 4 e. RR |
14 |
13
|
a1i |
|- ( ( ph /\ 2 || N ) -> 4 e. RR ) |
15 |
8
|
nnred |
|- ( ( ph /\ 2 || N ) -> ( N / 2 ) e. RR ) |
16 |
|
1red |
|- ( ( ph /\ 2 || N ) -> 1 e. RR ) |
17 |
15 16
|
resubcld |
|- ( ( ph /\ 2 || N ) -> ( ( N / 2 ) - 1 ) e. RR ) |
18 |
|
4pos |
|- 0 < 4 |
19 |
18
|
a1i |
|- ( ( ph /\ 2 || N ) -> 0 < 4 ) |
20 |
|
5m1e4 |
|- ( 5 - 1 ) = 4 |
21 |
|
5re |
|- 5 e. RR |
22 |
21
|
a1i |
|- ( ( ph /\ 2 || N ) -> 5 e. RR ) |
23 |
3
|
nncni |
|- 2 e. CC |
24 |
|
5cn |
|- 5 e. CC |
25 |
23 24
|
mulcomi |
|- ( 2 x. 5 ) = ( 5 x. 2 ) |
26 |
|
5t2e10 |
|- ( 5 x. 2 ) = ; 1 0 |
27 |
25 26
|
eqtri |
|- ( 2 x. 5 ) = ; 1 0 |
28 |
|
10re |
|- ; 1 0 e. RR |
29 |
28
|
recni |
|- ; 1 0 e. CC |
30 |
3
|
nnne0i |
|- 2 =/= 0 |
31 |
29 23 24 30
|
divmuli |
|- ( ( ; 1 0 / 2 ) = 5 <-> ( 2 x. 5 ) = ; 1 0 ) |
32 |
27 31
|
mpbir |
|- ( ; 1 0 / 2 ) = 5 |
33 |
28
|
a1i |
|- ( ( ph /\ 2 || N ) -> ; 1 0 e. RR ) |
34 |
1
|
nnred |
|- ( ph -> N e. RR ) |
35 |
34
|
adantr |
|- ( ( ph /\ 2 || N ) -> N e. RR ) |
36 |
|
2rp |
|- 2 e. RR+ |
37 |
36
|
a1i |
|- ( ( ph /\ 2 || N ) -> 2 e. RR+ ) |
38 |
|
9p1e10 |
|- ( 9 + 1 ) = ; 1 0 |
39 |
|
9re |
|- 9 e. RR |
40 |
39
|
a1i |
|- ( ph -> 9 e. RR ) |
41 |
40 34
|
leloed |
|- ( ph -> ( 9 <_ N <-> ( 9 < N \/ 9 = N ) ) ) |
42 |
2 41
|
mpbid |
|- ( ph -> ( 9 < N \/ 9 = N ) ) |
43 |
42
|
adantr |
|- ( ( ph /\ 2 || N ) -> ( 9 < N \/ 9 = N ) ) |
44 |
|
4cn |
|- 4 e. CC |
45 |
23 44
|
mulcomi |
|- ( 2 x. 4 ) = ( 4 x. 2 ) |
46 |
|
4t2e8 |
|- ( 4 x. 2 ) = 8 |
47 |
45 46
|
eqtri |
|- ( 2 x. 4 ) = 8 |
48 |
|
8re |
|- 8 e. RR |
49 |
48
|
recni |
|- 8 e. CC |
50 |
49 23 44 30
|
divmuli |
|- ( ( 8 / 2 ) = 4 <-> ( 2 x. 4 ) = 8 ) |
51 |
47 50
|
mpbir |
|- ( 8 / 2 ) = 4 |
52 |
|
4nn |
|- 4 e. NN |
53 |
51 52
|
eqeltri |
|- ( 8 / 2 ) e. NN |
54 |
|
8nn |
|- 8 e. NN |
55 |
|
nndivdvds |
|- ( ( 8 e. NN /\ 2 e. NN ) -> ( 2 || 8 <-> ( 8 / 2 ) e. NN ) ) |
56 |
54 3 55
|
mp2an |
|- ( 2 || 8 <-> ( 8 / 2 ) e. NN ) |
57 |
53 56
|
mpbir |
|- 2 || 8 |
58 |
|
9m1e8 |
|- ( 9 - 1 ) = 8 |
59 |
57 58
|
breqtrri |
|- 2 || ( 9 - 1 ) |
60 |
|
9nn |
|- 9 e. NN |
61 |
60
|
nnzi |
|- 9 e. ZZ |
62 |
|
oddm1even |
|- ( 9 e. ZZ -> ( -. 2 || 9 <-> 2 || ( 9 - 1 ) ) ) |
63 |
61 62
|
ax-mp |
|- ( -. 2 || 9 <-> 2 || ( 9 - 1 ) ) |
64 |
59 63
|
mpbir |
|- -. 2 || 9 |
65 |
|
breq2 |
|- ( 9 = N -> ( 2 || 9 <-> 2 || N ) ) |
66 |
64 65
|
mtbii |
|- ( 9 = N -> -. 2 || N ) |
67 |
66
|
con2i |
|- ( 2 || N -> -. 9 = N ) |
68 |
67
|
adantl |
|- ( ( ph /\ 2 || N ) -> -. 9 = N ) |
69 |
43 68
|
olcnd |
|- ( ( ph /\ 2 || N ) -> 9 < N ) |
70 |
1
|
nnzd |
|- ( ph -> N e. ZZ ) |
71 |
|
zltp1le |
|- ( ( 9 e. ZZ /\ N e. ZZ ) -> ( 9 < N <-> ( 9 + 1 ) <_ N ) ) |
72 |
61 71
|
mpan |
|- ( N e. ZZ -> ( 9 < N <-> ( 9 + 1 ) <_ N ) ) |
73 |
70 72
|
syl |
|- ( ph -> ( 9 < N <-> ( 9 + 1 ) <_ N ) ) |
74 |
73
|
adantr |
|- ( ( ph /\ 2 || N ) -> ( 9 < N <-> ( 9 + 1 ) <_ N ) ) |
75 |
69 74
|
mpbid |
|- ( ( ph /\ 2 || N ) -> ( 9 + 1 ) <_ N ) |
76 |
38 75
|
eqbrtrrid |
|- ( ( ph /\ 2 || N ) -> ; 1 0 <_ N ) |
77 |
33 35 37 76
|
lediv1dd |
|- ( ( ph /\ 2 || N ) -> ( ; 1 0 / 2 ) <_ ( N / 2 ) ) |
78 |
32 77
|
eqbrtrrid |
|- ( ( ph /\ 2 || N ) -> 5 <_ ( N / 2 ) ) |
79 |
22 15 16 78
|
lesub1dd |
|- ( ( ph /\ 2 || N ) -> ( 5 - 1 ) <_ ( ( N / 2 ) - 1 ) ) |
80 |
20 79
|
eqbrtrrid |
|- ( ( ph /\ 2 || N ) -> 4 <_ ( ( N / 2 ) - 1 ) ) |
81 |
12 14 17 19 80
|
ltletrd |
|- ( ( ph /\ 2 || N ) -> 0 < ( ( N / 2 ) - 1 ) ) |
82 |
11 81
|
jca |
|- ( ( ph /\ 2 || N ) -> ( ( ( N / 2 ) - 1 ) e. ZZ /\ 0 < ( ( N / 2 ) - 1 ) ) ) |
83 |
|
elnnz |
|- ( ( ( N / 2 ) - 1 ) e. NN <-> ( ( ( N / 2 ) - 1 ) e. ZZ /\ 0 < ( ( N / 2 ) - 1 ) ) ) |
84 |
82 83
|
sylibr |
|- ( ( ph /\ 2 || N ) -> ( ( N / 2 ) - 1 ) e. NN ) |
85 |
84 80
|
lcmineqlem22 |
|- ( ( ph /\ 2 || N ) -> ( ( 2 ^ ( ( 2 x. ( ( N / 2 ) - 1 ) ) + 1 ) ) <_ ( _lcm ` ( 1 ... ( ( 2 x. ( ( N / 2 ) - 1 ) ) + 1 ) ) ) /\ ( 2 ^ ( ( 2 x. ( ( N / 2 ) - 1 ) ) + 2 ) ) <_ ( _lcm ` ( 1 ... ( ( 2 x. ( ( N / 2 ) - 1 ) ) + 2 ) ) ) ) ) |
86 |
85
|
simprd |
|- ( ( ph /\ 2 || N ) -> ( 2 ^ ( ( 2 x. ( ( N / 2 ) - 1 ) ) + 2 ) ) <_ ( _lcm ` ( 1 ... ( ( 2 x. ( ( N / 2 ) - 1 ) ) + 2 ) ) ) ) |
87 |
4
|
nncnd |
|- ( ph -> 2 e. CC ) |
88 |
1
|
nncnd |
|- ( ph -> N e. CC ) |
89 |
88
|
halfcld |
|- ( ph -> ( N / 2 ) e. CC ) |
90 |
87 89
|
muls1d |
|- ( ph -> ( 2 x. ( ( N / 2 ) - 1 ) ) = ( ( 2 x. ( N / 2 ) ) - 2 ) ) |
91 |
90
|
oveq1d |
|- ( ph -> ( ( 2 x. ( ( N / 2 ) - 1 ) ) + 2 ) = ( ( ( 2 x. ( N / 2 ) ) - 2 ) + 2 ) ) |
92 |
87 89
|
mulcld |
|- ( ph -> ( 2 x. ( N / 2 ) ) e. CC ) |
93 |
92 87
|
npcand |
|- ( ph -> ( ( ( 2 x. ( N / 2 ) ) - 2 ) + 2 ) = ( 2 x. ( N / 2 ) ) ) |
94 |
91 93
|
eqtrd |
|- ( ph -> ( ( 2 x. ( ( N / 2 ) - 1 ) ) + 2 ) = ( 2 x. ( N / 2 ) ) ) |
95 |
4
|
nnne0d |
|- ( ph -> 2 =/= 0 ) |
96 |
88 87 95
|
divcan2d |
|- ( ph -> ( 2 x. ( N / 2 ) ) = N ) |
97 |
94 96
|
eqtrd |
|- ( ph -> ( ( 2 x. ( ( N / 2 ) - 1 ) ) + 2 ) = N ) |
98 |
97
|
oveq2d |
|- ( ph -> ( 2 ^ ( ( 2 x. ( ( N / 2 ) - 1 ) ) + 2 ) ) = ( 2 ^ N ) ) |
99 |
97
|
oveq2d |
|- ( ph -> ( 1 ... ( ( 2 x. ( ( N / 2 ) - 1 ) ) + 2 ) ) = ( 1 ... N ) ) |
100 |
99
|
fveq2d |
|- ( ph -> ( _lcm ` ( 1 ... ( ( 2 x. ( ( N / 2 ) - 1 ) ) + 2 ) ) ) = ( _lcm ` ( 1 ... N ) ) ) |
101 |
98 100
|
breq12d |
|- ( ph -> ( ( 2 ^ ( ( 2 x. ( ( N / 2 ) - 1 ) ) + 2 ) ) <_ ( _lcm ` ( 1 ... ( ( 2 x. ( ( N / 2 ) - 1 ) ) + 2 ) ) ) <-> ( 2 ^ N ) <_ ( _lcm ` ( 1 ... N ) ) ) ) |
102 |
101
|
adantr |
|- ( ( ph /\ 2 || N ) -> ( ( 2 ^ ( ( 2 x. ( ( N / 2 ) - 1 ) ) + 2 ) ) <_ ( _lcm ` ( 1 ... ( ( 2 x. ( ( N / 2 ) - 1 ) ) + 2 ) ) ) <-> ( 2 ^ N ) <_ ( _lcm ` ( 1 ... N ) ) ) ) |
103 |
86 102
|
mpbid |
|- ( ( ph /\ 2 || N ) -> ( 2 ^ N ) <_ ( _lcm ` ( 1 ... N ) ) ) |
104 |
|
oddm1even |
|- ( N e. ZZ -> ( -. 2 || N <-> 2 || ( N - 1 ) ) ) |
105 |
70 104
|
syl |
|- ( ph -> ( -. 2 || N <-> 2 || ( N - 1 ) ) ) |
106 |
105
|
biimpa |
|- ( ( ph /\ -. 2 || N ) -> 2 || ( N - 1 ) ) |
107 |
3
|
a1i |
|- ( ( ph /\ -. 2 || N ) -> 2 e. NN ) |
108 |
|
1zzd |
|- ( ph -> 1 e. ZZ ) |
109 |
70 108
|
zsubcld |
|- ( ph -> ( N - 1 ) e. ZZ ) |
110 |
|
0red |
|- ( ph -> 0 e. RR ) |
111 |
48
|
a1i |
|- ( ph -> 8 e. RR ) |
112 |
|
1red |
|- ( ph -> 1 e. RR ) |
113 |
34 112
|
resubcld |
|- ( ph -> ( N - 1 ) e. RR ) |
114 |
|
8pos |
|- 0 < 8 |
115 |
114
|
a1i |
|- ( ph -> 0 < 8 ) |
116 |
40 34 112 2
|
lesub1dd |
|- ( ph -> ( 9 - 1 ) <_ ( N - 1 ) ) |
117 |
58 116
|
eqbrtrrid |
|- ( ph -> 8 <_ ( N - 1 ) ) |
118 |
110 111 113 115 117
|
ltletrd |
|- ( ph -> 0 < ( N - 1 ) ) |
119 |
109 118
|
jca |
|- ( ph -> ( ( N - 1 ) e. ZZ /\ 0 < ( N - 1 ) ) ) |
120 |
|
elnnz |
|- ( ( N - 1 ) e. NN <-> ( ( N - 1 ) e. ZZ /\ 0 < ( N - 1 ) ) ) |
121 |
119 120
|
sylibr |
|- ( ph -> ( N - 1 ) e. NN ) |
122 |
121
|
adantr |
|- ( ( ph /\ -. 2 || N ) -> ( N - 1 ) e. NN ) |
123 |
107 122
|
nndivdvdsd |
|- ( ( ph /\ -. 2 || N ) -> ( 2 || ( N - 1 ) <-> ( ( N - 1 ) / 2 ) e. NN ) ) |
124 |
106 123
|
mpbid |
|- ( ( ph /\ -. 2 || N ) -> ( ( N - 1 ) / 2 ) e. NN ) |
125 |
44 23
|
mulcomi |
|- ( 4 x. 2 ) = ( 2 x. 4 ) |
126 |
125 46
|
eqtr3i |
|- ( 2 x. 4 ) = 8 |
127 |
126 50
|
mpbir |
|- ( 8 / 2 ) = 4 |
128 |
4
|
nnrpd |
|- ( ph -> 2 e. RR+ ) |
129 |
111 113 128 117
|
lediv1dd |
|- ( ph -> ( 8 / 2 ) <_ ( ( N - 1 ) / 2 ) ) |
130 |
127 129
|
eqbrtrrid |
|- ( ph -> 4 <_ ( ( N - 1 ) / 2 ) ) |
131 |
130
|
adantr |
|- ( ( ph /\ -. 2 || N ) -> 4 <_ ( ( N - 1 ) / 2 ) ) |
132 |
124 131
|
lcmineqlem22 |
|- ( ( ph /\ -. 2 || N ) -> ( ( 2 ^ ( ( 2 x. ( ( N - 1 ) / 2 ) ) + 1 ) ) <_ ( _lcm ` ( 1 ... ( ( 2 x. ( ( N - 1 ) / 2 ) ) + 1 ) ) ) /\ ( 2 ^ ( ( 2 x. ( ( N - 1 ) / 2 ) ) + 2 ) ) <_ ( _lcm ` ( 1 ... ( ( 2 x. ( ( N - 1 ) / 2 ) ) + 2 ) ) ) ) ) |
133 |
132
|
simpld |
|- ( ( ph /\ -. 2 || N ) -> ( 2 ^ ( ( 2 x. ( ( N - 1 ) / 2 ) ) + 1 ) ) <_ ( _lcm ` ( 1 ... ( ( 2 x. ( ( N - 1 ) / 2 ) ) + 1 ) ) ) ) |
134 |
|
1cnd |
|- ( ph -> 1 e. CC ) |
135 |
88 134
|
subcld |
|- ( ph -> ( N - 1 ) e. CC ) |
136 |
135 87 95
|
divcan2d |
|- ( ph -> ( 2 x. ( ( N - 1 ) / 2 ) ) = ( N - 1 ) ) |
137 |
136
|
oveq1d |
|- ( ph -> ( ( 2 x. ( ( N - 1 ) / 2 ) ) + 1 ) = ( ( N - 1 ) + 1 ) ) |
138 |
88 134
|
npcand |
|- ( ph -> ( ( N - 1 ) + 1 ) = N ) |
139 |
137 138
|
eqtrd |
|- ( ph -> ( ( 2 x. ( ( N - 1 ) / 2 ) ) + 1 ) = N ) |
140 |
139
|
oveq2d |
|- ( ph -> ( 2 ^ ( ( 2 x. ( ( N - 1 ) / 2 ) ) + 1 ) ) = ( 2 ^ N ) ) |
141 |
139
|
oveq2d |
|- ( ph -> ( 1 ... ( ( 2 x. ( ( N - 1 ) / 2 ) ) + 1 ) ) = ( 1 ... N ) ) |
142 |
141
|
fveq2d |
|- ( ph -> ( _lcm ` ( 1 ... ( ( 2 x. ( ( N - 1 ) / 2 ) ) + 1 ) ) ) = ( _lcm ` ( 1 ... N ) ) ) |
143 |
140 142
|
breq12d |
|- ( ph -> ( ( 2 ^ ( ( 2 x. ( ( N - 1 ) / 2 ) ) + 1 ) ) <_ ( _lcm ` ( 1 ... ( ( 2 x. ( ( N - 1 ) / 2 ) ) + 1 ) ) ) <-> ( 2 ^ N ) <_ ( _lcm ` ( 1 ... N ) ) ) ) |
144 |
143
|
adantr |
|- ( ( ph /\ -. 2 || N ) -> ( ( 2 ^ ( ( 2 x. ( ( N - 1 ) / 2 ) ) + 1 ) ) <_ ( _lcm ` ( 1 ... ( ( 2 x. ( ( N - 1 ) / 2 ) ) + 1 ) ) ) <-> ( 2 ^ N ) <_ ( _lcm ` ( 1 ... N ) ) ) ) |
145 |
133 144
|
mpbid |
|- ( ( ph /\ -. 2 || N ) -> ( 2 ^ N ) <_ ( _lcm ` ( 1 ... N ) ) ) |
146 |
103 145
|
pm2.61dan |
|- ( ph -> ( 2 ^ N ) <_ ( _lcm ` ( 1 ... N ) ) ) |