| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lcmineqlem23.1 |
|- ( ph -> N e. NN ) |
| 2 |
|
lcmineqlem23.2 |
|- ( ph -> 9 <_ N ) |
| 3 |
|
2nn |
|- 2 e. NN |
| 4 |
3
|
a1i |
|- ( ph -> 2 e. NN ) |
| 5 |
1 4
|
jca |
|- ( ph -> ( N e. NN /\ 2 e. NN ) ) |
| 6 |
|
nndivdvds |
|- ( ( N e. NN /\ 2 e. NN ) -> ( 2 || N <-> ( N / 2 ) e. NN ) ) |
| 7 |
5 6
|
syl |
|- ( ph -> ( 2 || N <-> ( N / 2 ) e. NN ) ) |
| 8 |
7
|
biimpa |
|- ( ( ph /\ 2 || N ) -> ( N / 2 ) e. NN ) |
| 9 |
8
|
nnzd |
|- ( ( ph /\ 2 || N ) -> ( N / 2 ) e. ZZ ) |
| 10 |
|
1zzd |
|- ( ( ph /\ 2 || N ) -> 1 e. ZZ ) |
| 11 |
9 10
|
zsubcld |
|- ( ( ph /\ 2 || N ) -> ( ( N / 2 ) - 1 ) e. ZZ ) |
| 12 |
|
0red |
|- ( ( ph /\ 2 || N ) -> 0 e. RR ) |
| 13 |
|
4re |
|- 4 e. RR |
| 14 |
13
|
a1i |
|- ( ( ph /\ 2 || N ) -> 4 e. RR ) |
| 15 |
8
|
nnred |
|- ( ( ph /\ 2 || N ) -> ( N / 2 ) e. RR ) |
| 16 |
|
1red |
|- ( ( ph /\ 2 || N ) -> 1 e. RR ) |
| 17 |
15 16
|
resubcld |
|- ( ( ph /\ 2 || N ) -> ( ( N / 2 ) - 1 ) e. RR ) |
| 18 |
|
4pos |
|- 0 < 4 |
| 19 |
18
|
a1i |
|- ( ( ph /\ 2 || N ) -> 0 < 4 ) |
| 20 |
|
5m1e4 |
|- ( 5 - 1 ) = 4 |
| 21 |
|
5re |
|- 5 e. RR |
| 22 |
21
|
a1i |
|- ( ( ph /\ 2 || N ) -> 5 e. RR ) |
| 23 |
3
|
nncni |
|- 2 e. CC |
| 24 |
|
5cn |
|- 5 e. CC |
| 25 |
23 24
|
mulcomi |
|- ( 2 x. 5 ) = ( 5 x. 2 ) |
| 26 |
|
5t2e10 |
|- ( 5 x. 2 ) = ; 1 0 |
| 27 |
25 26
|
eqtri |
|- ( 2 x. 5 ) = ; 1 0 |
| 28 |
|
10re |
|- ; 1 0 e. RR |
| 29 |
28
|
recni |
|- ; 1 0 e. CC |
| 30 |
3
|
nnne0i |
|- 2 =/= 0 |
| 31 |
29 23 24 30
|
divmuli |
|- ( ( ; 1 0 / 2 ) = 5 <-> ( 2 x. 5 ) = ; 1 0 ) |
| 32 |
27 31
|
mpbir |
|- ( ; 1 0 / 2 ) = 5 |
| 33 |
28
|
a1i |
|- ( ( ph /\ 2 || N ) -> ; 1 0 e. RR ) |
| 34 |
1
|
nnred |
|- ( ph -> N e. RR ) |
| 35 |
34
|
adantr |
|- ( ( ph /\ 2 || N ) -> N e. RR ) |
| 36 |
|
2rp |
|- 2 e. RR+ |
| 37 |
36
|
a1i |
|- ( ( ph /\ 2 || N ) -> 2 e. RR+ ) |
| 38 |
|
9p1e10 |
|- ( 9 + 1 ) = ; 1 0 |
| 39 |
|
9re |
|- 9 e. RR |
| 40 |
39
|
a1i |
|- ( ph -> 9 e. RR ) |
| 41 |
40 34
|
leloed |
|- ( ph -> ( 9 <_ N <-> ( 9 < N \/ 9 = N ) ) ) |
| 42 |
2 41
|
mpbid |
|- ( ph -> ( 9 < N \/ 9 = N ) ) |
| 43 |
42
|
adantr |
|- ( ( ph /\ 2 || N ) -> ( 9 < N \/ 9 = N ) ) |
| 44 |
|
4cn |
|- 4 e. CC |
| 45 |
23 44
|
mulcomi |
|- ( 2 x. 4 ) = ( 4 x. 2 ) |
| 46 |
|
4t2e8 |
|- ( 4 x. 2 ) = 8 |
| 47 |
45 46
|
eqtri |
|- ( 2 x. 4 ) = 8 |
| 48 |
|
8re |
|- 8 e. RR |
| 49 |
48
|
recni |
|- 8 e. CC |
| 50 |
49 23 44 30
|
divmuli |
|- ( ( 8 / 2 ) = 4 <-> ( 2 x. 4 ) = 8 ) |
| 51 |
47 50
|
mpbir |
|- ( 8 / 2 ) = 4 |
| 52 |
|
4nn |
|- 4 e. NN |
| 53 |
51 52
|
eqeltri |
|- ( 8 / 2 ) e. NN |
| 54 |
|
8nn |
|- 8 e. NN |
| 55 |
|
nndivdvds |
|- ( ( 8 e. NN /\ 2 e. NN ) -> ( 2 || 8 <-> ( 8 / 2 ) e. NN ) ) |
| 56 |
54 3 55
|
mp2an |
|- ( 2 || 8 <-> ( 8 / 2 ) e. NN ) |
| 57 |
53 56
|
mpbir |
|- 2 || 8 |
| 58 |
|
9m1e8 |
|- ( 9 - 1 ) = 8 |
| 59 |
57 58
|
breqtrri |
|- 2 || ( 9 - 1 ) |
| 60 |
|
9nn |
|- 9 e. NN |
| 61 |
60
|
nnzi |
|- 9 e. ZZ |
| 62 |
|
oddm1even |
|- ( 9 e. ZZ -> ( -. 2 || 9 <-> 2 || ( 9 - 1 ) ) ) |
| 63 |
61 62
|
ax-mp |
|- ( -. 2 || 9 <-> 2 || ( 9 - 1 ) ) |
| 64 |
59 63
|
mpbir |
|- -. 2 || 9 |
| 65 |
|
breq2 |
|- ( 9 = N -> ( 2 || 9 <-> 2 || N ) ) |
| 66 |
64 65
|
mtbii |
|- ( 9 = N -> -. 2 || N ) |
| 67 |
66
|
con2i |
|- ( 2 || N -> -. 9 = N ) |
| 68 |
67
|
adantl |
|- ( ( ph /\ 2 || N ) -> -. 9 = N ) |
| 69 |
43 68
|
olcnd |
|- ( ( ph /\ 2 || N ) -> 9 < N ) |
| 70 |
1
|
nnzd |
|- ( ph -> N e. ZZ ) |
| 71 |
|
zltp1le |
|- ( ( 9 e. ZZ /\ N e. ZZ ) -> ( 9 < N <-> ( 9 + 1 ) <_ N ) ) |
| 72 |
61 71
|
mpan |
|- ( N e. ZZ -> ( 9 < N <-> ( 9 + 1 ) <_ N ) ) |
| 73 |
70 72
|
syl |
|- ( ph -> ( 9 < N <-> ( 9 + 1 ) <_ N ) ) |
| 74 |
73
|
adantr |
|- ( ( ph /\ 2 || N ) -> ( 9 < N <-> ( 9 + 1 ) <_ N ) ) |
| 75 |
69 74
|
mpbid |
|- ( ( ph /\ 2 || N ) -> ( 9 + 1 ) <_ N ) |
| 76 |
38 75
|
eqbrtrrid |
|- ( ( ph /\ 2 || N ) -> ; 1 0 <_ N ) |
| 77 |
33 35 37 76
|
lediv1dd |
|- ( ( ph /\ 2 || N ) -> ( ; 1 0 / 2 ) <_ ( N / 2 ) ) |
| 78 |
32 77
|
eqbrtrrid |
|- ( ( ph /\ 2 || N ) -> 5 <_ ( N / 2 ) ) |
| 79 |
22 15 16 78
|
lesub1dd |
|- ( ( ph /\ 2 || N ) -> ( 5 - 1 ) <_ ( ( N / 2 ) - 1 ) ) |
| 80 |
20 79
|
eqbrtrrid |
|- ( ( ph /\ 2 || N ) -> 4 <_ ( ( N / 2 ) - 1 ) ) |
| 81 |
12 14 17 19 80
|
ltletrd |
|- ( ( ph /\ 2 || N ) -> 0 < ( ( N / 2 ) - 1 ) ) |
| 82 |
11 81
|
jca |
|- ( ( ph /\ 2 || N ) -> ( ( ( N / 2 ) - 1 ) e. ZZ /\ 0 < ( ( N / 2 ) - 1 ) ) ) |
| 83 |
|
elnnz |
|- ( ( ( N / 2 ) - 1 ) e. NN <-> ( ( ( N / 2 ) - 1 ) e. ZZ /\ 0 < ( ( N / 2 ) - 1 ) ) ) |
| 84 |
82 83
|
sylibr |
|- ( ( ph /\ 2 || N ) -> ( ( N / 2 ) - 1 ) e. NN ) |
| 85 |
84 80
|
lcmineqlem22 |
|- ( ( ph /\ 2 || N ) -> ( ( 2 ^ ( ( 2 x. ( ( N / 2 ) - 1 ) ) + 1 ) ) <_ ( _lcm ` ( 1 ... ( ( 2 x. ( ( N / 2 ) - 1 ) ) + 1 ) ) ) /\ ( 2 ^ ( ( 2 x. ( ( N / 2 ) - 1 ) ) + 2 ) ) <_ ( _lcm ` ( 1 ... ( ( 2 x. ( ( N / 2 ) - 1 ) ) + 2 ) ) ) ) ) |
| 86 |
85
|
simprd |
|- ( ( ph /\ 2 || N ) -> ( 2 ^ ( ( 2 x. ( ( N / 2 ) - 1 ) ) + 2 ) ) <_ ( _lcm ` ( 1 ... ( ( 2 x. ( ( N / 2 ) - 1 ) ) + 2 ) ) ) ) |
| 87 |
4
|
nncnd |
|- ( ph -> 2 e. CC ) |
| 88 |
1
|
nncnd |
|- ( ph -> N e. CC ) |
| 89 |
88
|
halfcld |
|- ( ph -> ( N / 2 ) e. CC ) |
| 90 |
87 89
|
muls1d |
|- ( ph -> ( 2 x. ( ( N / 2 ) - 1 ) ) = ( ( 2 x. ( N / 2 ) ) - 2 ) ) |
| 91 |
90
|
oveq1d |
|- ( ph -> ( ( 2 x. ( ( N / 2 ) - 1 ) ) + 2 ) = ( ( ( 2 x. ( N / 2 ) ) - 2 ) + 2 ) ) |
| 92 |
87 89
|
mulcld |
|- ( ph -> ( 2 x. ( N / 2 ) ) e. CC ) |
| 93 |
92 87
|
npcand |
|- ( ph -> ( ( ( 2 x. ( N / 2 ) ) - 2 ) + 2 ) = ( 2 x. ( N / 2 ) ) ) |
| 94 |
91 93
|
eqtrd |
|- ( ph -> ( ( 2 x. ( ( N / 2 ) - 1 ) ) + 2 ) = ( 2 x. ( N / 2 ) ) ) |
| 95 |
4
|
nnne0d |
|- ( ph -> 2 =/= 0 ) |
| 96 |
88 87 95
|
divcan2d |
|- ( ph -> ( 2 x. ( N / 2 ) ) = N ) |
| 97 |
94 96
|
eqtrd |
|- ( ph -> ( ( 2 x. ( ( N / 2 ) - 1 ) ) + 2 ) = N ) |
| 98 |
97
|
oveq2d |
|- ( ph -> ( 2 ^ ( ( 2 x. ( ( N / 2 ) - 1 ) ) + 2 ) ) = ( 2 ^ N ) ) |
| 99 |
97
|
oveq2d |
|- ( ph -> ( 1 ... ( ( 2 x. ( ( N / 2 ) - 1 ) ) + 2 ) ) = ( 1 ... N ) ) |
| 100 |
99
|
fveq2d |
|- ( ph -> ( _lcm ` ( 1 ... ( ( 2 x. ( ( N / 2 ) - 1 ) ) + 2 ) ) ) = ( _lcm ` ( 1 ... N ) ) ) |
| 101 |
98 100
|
breq12d |
|- ( ph -> ( ( 2 ^ ( ( 2 x. ( ( N / 2 ) - 1 ) ) + 2 ) ) <_ ( _lcm ` ( 1 ... ( ( 2 x. ( ( N / 2 ) - 1 ) ) + 2 ) ) ) <-> ( 2 ^ N ) <_ ( _lcm ` ( 1 ... N ) ) ) ) |
| 102 |
101
|
adantr |
|- ( ( ph /\ 2 || N ) -> ( ( 2 ^ ( ( 2 x. ( ( N / 2 ) - 1 ) ) + 2 ) ) <_ ( _lcm ` ( 1 ... ( ( 2 x. ( ( N / 2 ) - 1 ) ) + 2 ) ) ) <-> ( 2 ^ N ) <_ ( _lcm ` ( 1 ... N ) ) ) ) |
| 103 |
86 102
|
mpbid |
|- ( ( ph /\ 2 || N ) -> ( 2 ^ N ) <_ ( _lcm ` ( 1 ... N ) ) ) |
| 104 |
|
oddm1even |
|- ( N e. ZZ -> ( -. 2 || N <-> 2 || ( N - 1 ) ) ) |
| 105 |
70 104
|
syl |
|- ( ph -> ( -. 2 || N <-> 2 || ( N - 1 ) ) ) |
| 106 |
105
|
biimpa |
|- ( ( ph /\ -. 2 || N ) -> 2 || ( N - 1 ) ) |
| 107 |
3
|
a1i |
|- ( ( ph /\ -. 2 || N ) -> 2 e. NN ) |
| 108 |
|
1zzd |
|- ( ph -> 1 e. ZZ ) |
| 109 |
70 108
|
zsubcld |
|- ( ph -> ( N - 1 ) e. ZZ ) |
| 110 |
|
0red |
|- ( ph -> 0 e. RR ) |
| 111 |
48
|
a1i |
|- ( ph -> 8 e. RR ) |
| 112 |
|
1red |
|- ( ph -> 1 e. RR ) |
| 113 |
34 112
|
resubcld |
|- ( ph -> ( N - 1 ) e. RR ) |
| 114 |
|
8pos |
|- 0 < 8 |
| 115 |
114
|
a1i |
|- ( ph -> 0 < 8 ) |
| 116 |
40 34 112 2
|
lesub1dd |
|- ( ph -> ( 9 - 1 ) <_ ( N - 1 ) ) |
| 117 |
58 116
|
eqbrtrrid |
|- ( ph -> 8 <_ ( N - 1 ) ) |
| 118 |
110 111 113 115 117
|
ltletrd |
|- ( ph -> 0 < ( N - 1 ) ) |
| 119 |
109 118
|
jca |
|- ( ph -> ( ( N - 1 ) e. ZZ /\ 0 < ( N - 1 ) ) ) |
| 120 |
|
elnnz |
|- ( ( N - 1 ) e. NN <-> ( ( N - 1 ) e. ZZ /\ 0 < ( N - 1 ) ) ) |
| 121 |
119 120
|
sylibr |
|- ( ph -> ( N - 1 ) e. NN ) |
| 122 |
121
|
adantr |
|- ( ( ph /\ -. 2 || N ) -> ( N - 1 ) e. NN ) |
| 123 |
107 122
|
nndivdvdsd |
|- ( ( ph /\ -. 2 || N ) -> ( 2 || ( N - 1 ) <-> ( ( N - 1 ) / 2 ) e. NN ) ) |
| 124 |
106 123
|
mpbid |
|- ( ( ph /\ -. 2 || N ) -> ( ( N - 1 ) / 2 ) e. NN ) |
| 125 |
44 23
|
mulcomi |
|- ( 4 x. 2 ) = ( 2 x. 4 ) |
| 126 |
125 46
|
eqtr3i |
|- ( 2 x. 4 ) = 8 |
| 127 |
126 50
|
mpbir |
|- ( 8 / 2 ) = 4 |
| 128 |
4
|
nnrpd |
|- ( ph -> 2 e. RR+ ) |
| 129 |
111 113 128 117
|
lediv1dd |
|- ( ph -> ( 8 / 2 ) <_ ( ( N - 1 ) / 2 ) ) |
| 130 |
127 129
|
eqbrtrrid |
|- ( ph -> 4 <_ ( ( N - 1 ) / 2 ) ) |
| 131 |
130
|
adantr |
|- ( ( ph /\ -. 2 || N ) -> 4 <_ ( ( N - 1 ) / 2 ) ) |
| 132 |
124 131
|
lcmineqlem22 |
|- ( ( ph /\ -. 2 || N ) -> ( ( 2 ^ ( ( 2 x. ( ( N - 1 ) / 2 ) ) + 1 ) ) <_ ( _lcm ` ( 1 ... ( ( 2 x. ( ( N - 1 ) / 2 ) ) + 1 ) ) ) /\ ( 2 ^ ( ( 2 x. ( ( N - 1 ) / 2 ) ) + 2 ) ) <_ ( _lcm ` ( 1 ... ( ( 2 x. ( ( N - 1 ) / 2 ) ) + 2 ) ) ) ) ) |
| 133 |
132
|
simpld |
|- ( ( ph /\ -. 2 || N ) -> ( 2 ^ ( ( 2 x. ( ( N - 1 ) / 2 ) ) + 1 ) ) <_ ( _lcm ` ( 1 ... ( ( 2 x. ( ( N - 1 ) / 2 ) ) + 1 ) ) ) ) |
| 134 |
|
1cnd |
|- ( ph -> 1 e. CC ) |
| 135 |
88 134
|
subcld |
|- ( ph -> ( N - 1 ) e. CC ) |
| 136 |
135 87 95
|
divcan2d |
|- ( ph -> ( 2 x. ( ( N - 1 ) / 2 ) ) = ( N - 1 ) ) |
| 137 |
136
|
oveq1d |
|- ( ph -> ( ( 2 x. ( ( N - 1 ) / 2 ) ) + 1 ) = ( ( N - 1 ) + 1 ) ) |
| 138 |
88 134
|
npcand |
|- ( ph -> ( ( N - 1 ) + 1 ) = N ) |
| 139 |
137 138
|
eqtrd |
|- ( ph -> ( ( 2 x. ( ( N - 1 ) / 2 ) ) + 1 ) = N ) |
| 140 |
139
|
oveq2d |
|- ( ph -> ( 2 ^ ( ( 2 x. ( ( N - 1 ) / 2 ) ) + 1 ) ) = ( 2 ^ N ) ) |
| 141 |
139
|
oveq2d |
|- ( ph -> ( 1 ... ( ( 2 x. ( ( N - 1 ) / 2 ) ) + 1 ) ) = ( 1 ... N ) ) |
| 142 |
141
|
fveq2d |
|- ( ph -> ( _lcm ` ( 1 ... ( ( 2 x. ( ( N - 1 ) / 2 ) ) + 1 ) ) ) = ( _lcm ` ( 1 ... N ) ) ) |
| 143 |
140 142
|
breq12d |
|- ( ph -> ( ( 2 ^ ( ( 2 x. ( ( N - 1 ) / 2 ) ) + 1 ) ) <_ ( _lcm ` ( 1 ... ( ( 2 x. ( ( N - 1 ) / 2 ) ) + 1 ) ) ) <-> ( 2 ^ N ) <_ ( _lcm ` ( 1 ... N ) ) ) ) |
| 144 |
143
|
adantr |
|- ( ( ph /\ -. 2 || N ) -> ( ( 2 ^ ( ( 2 x. ( ( N - 1 ) / 2 ) ) + 1 ) ) <_ ( _lcm ` ( 1 ... ( ( 2 x. ( ( N - 1 ) / 2 ) ) + 1 ) ) ) <-> ( 2 ^ N ) <_ ( _lcm ` ( 1 ... N ) ) ) ) |
| 145 |
133 144
|
mpbid |
|- ( ( ph /\ -. 2 || N ) -> ( 2 ^ N ) <_ ( _lcm ` ( 1 ... N ) ) ) |
| 146 |
103 145
|
pm2.61dan |
|- ( ph -> ( 2 ^ N ) <_ ( _lcm ` ( 1 ... N ) ) ) |