Description: The lcm inequality lemma without base cases 7 and 8. (Contributed by metakunt, 12-May-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lcmineqlem22.1 | |
|
lcmineqlem22.2 | |
||
Assertion | lcmineqlem22 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lcmineqlem22.1 | |
|
2 | lcmineqlem22.2 | |
|
3 | 2re | |
|
4 | 3 | a1i | |
5 | 2nn0 | |
|
6 | 5 | a1i | |
7 | 1 | nnnn0d | |
8 | 6 7 | nn0mulcld | |
9 | 1nn0 | |
|
10 | 9 | a1i | |
11 | 8 10 | nn0addcld | |
12 | 4 11 | reexpcld | |
13 | 8 6 | nn0addcld | |
14 | 4 13 | reexpcld | |
15 | fz1ssnn | |
|
16 | fzfi | |
|
17 | lcmfnncl | |
|
18 | 15 16 17 | mp2an | |
19 | 18 | a1i | |
20 | 19 | nnred | |
21 | 1red | |
|
22 | 1 | nnred | |
23 | 4 22 | remulcld | |
24 | 1lt2 | |
|
25 | 24 | a1i | |
26 | 21 4 25 | ltled | |
27 | 21 4 23 26 | leadd2dd | |
28 | 2z | |
|
29 | 28 | a1i | |
30 | 1 | nnzd | |
31 | 29 30 | zmulcld | |
32 | 31 | peano2zd | |
33 | 31 29 | zaddcld | |
34 | 4 32 33 25 | leexp2d | |
35 | 27 34 | mpbid | |
36 | 1 2 | lcmineqlem21 | |
37 | 12 14 20 35 36 | letrd | |
38 | fz1ssnn | |
|
39 | fzfi | |
|
40 | lcmfnncl | |
|
41 | 38 39 40 | mp2an | |
42 | 41 | a1i | |
43 | 42 | nnred | |
44 | 19 | nnzd | |
45 | 44 33 | jca | |
46 | dvdslcm | |
|
47 | 45 46 | syl | |
48 | 47 | simpld | |
49 | 2nn | |
|
50 | 49 | a1i | |
51 | 50 1 | nnmulcld | |
52 | 51 50 | nnaddcld | |
53 | 52 | lcmfunnnd | |
54 | 23 | recnd | |
55 | 4 | recnd | |
56 | 1cnd | |
|
57 | 54 55 56 | addsubassd | |
58 | 2m1e1 | |
|
59 | 58 | oveq2i | |
60 | 57 59 | eqtrdi | |
61 | 60 | oveq2d | |
62 | 61 | fveq2d | |
63 | 62 | oveq1d | |
64 | 53 63 | eqtrd | |
65 | 48 64 | breqtrrd | |
66 | 44 42 | jca | |
67 | dvdsle | |
|
68 | 66 67 | syl | |
69 | 65 68 | mpd | |
70 | 14 20 43 36 69 | letrd | |
71 | 37 70 | jca | |