Metamath Proof Explorer


Theorem lcmineqlem22

Description: The lcm inequality lemma without base cases 7 and 8. (Contributed by metakunt, 12-May-2024)

Ref Expression
Hypotheses lcmineqlem22.1 φN
lcmineqlem22.2 φ4N
Assertion lcmineqlem22 φ22 N+1lcm_12 N+122 N+2lcm_12 N+2

Proof

Step Hyp Ref Expression
1 lcmineqlem22.1 φN
2 lcmineqlem22.2 φ4N
3 2re 2
4 3 a1i φ2
5 2nn0 20
6 5 a1i φ20
7 1 nnnn0d φN0
8 6 7 nn0mulcld φ2 N0
9 1nn0 10
10 9 a1i φ10
11 8 10 nn0addcld φ2 N+10
12 4 11 reexpcld φ22 N+1
13 8 6 nn0addcld φ2 N+20
14 4 13 reexpcld φ22 N+2
15 fz1ssnn 12 N+1
16 fzfi 12 N+1Fin
17 lcmfnncl 12 N+112 N+1Finlcm_12 N+1
18 15 16 17 mp2an lcm_12 N+1
19 18 a1i φlcm_12 N+1
20 19 nnred φlcm_12 N+1
21 1red φ1
22 1 nnred φN
23 4 22 remulcld φ2 N
24 1lt2 1<2
25 24 a1i φ1<2
26 21 4 25 ltled φ12
27 21 4 23 26 leadd2dd φ2 N+12 N+2
28 2z 2
29 28 a1i φ2
30 1 nnzd φN
31 29 30 zmulcld φ2 N
32 31 peano2zd φ2 N+1
33 31 29 zaddcld φ2 N+2
34 4 32 33 25 leexp2d φ2 N+12 N+222 N+122 N+2
35 27 34 mpbid φ22 N+122 N+2
36 1 2 lcmineqlem21 φ22 N+2lcm_12 N+1
37 12 14 20 35 36 letrd φ22 N+1lcm_12 N+1
38 fz1ssnn 12 N+2
39 fzfi 12 N+2Fin
40 lcmfnncl 12 N+212 N+2Finlcm_12 N+2
41 38 39 40 mp2an lcm_12 N+2
42 41 a1i φlcm_12 N+2
43 42 nnred φlcm_12 N+2
44 19 nnzd φlcm_12 N+1
45 44 33 jca φlcm_12 N+12 N+2
46 dvdslcm lcm_12 N+12 N+2lcm_12 N+1lcm_12 N+1lcm2 N+22 N+2lcm_12 N+1lcm2 N+2
47 45 46 syl φlcm_12 N+1lcm_12 N+1lcm2 N+22 N+2lcm_12 N+1lcm2 N+2
48 47 simpld φlcm_12 N+1lcm_12 N+1lcm2 N+2
49 2nn 2
50 49 a1i φ2
51 50 1 nnmulcld φ2 N
52 51 50 nnaddcld φ2 N+2
53 52 lcmfunnnd φlcm_12 N+2=lcm_12 N+2-1lcm2 N+2
54 23 recnd φ2 N
55 4 recnd φ2
56 1cnd φ1
57 54 55 56 addsubassd φ2 N+2-1=2 N+2-1
58 2m1e1 21=1
59 58 oveq2i 2 N+2-1=2 N+1
60 57 59 eqtrdi φ2 N+2-1=2 N+1
61 60 oveq2d φ12 N+2-1=12 N+1
62 61 fveq2d φlcm_12 N+2-1=lcm_12 N+1
63 62 oveq1d φlcm_12 N+2-1lcm2 N+2=lcm_12 N+1lcm2 N+2
64 53 63 eqtrd φlcm_12 N+2=lcm_12 N+1lcm2 N+2
65 48 64 breqtrrd φlcm_12 N+1lcm_12 N+2
66 44 42 jca φlcm_12 N+1lcm_12 N+2
67 dvdsle lcm_12 N+1lcm_12 N+2lcm_12 N+1lcm_12 N+2lcm_12 N+1lcm_12 N+2
68 66 67 syl φlcm_12 N+1lcm_12 N+2lcm_12 N+1lcm_12 N+2
69 65 68 mpd φlcm_12 N+1lcm_12 N+2
70 14 20 43 36 69 letrd φ22 N+2lcm_12 N+2
71 37 70 jca φ22 N+1lcm_12 N+122 N+2lcm_12 N+2