Metamath Proof Explorer


Theorem lcmineqlem19

Description: Dividing implies inequality for lcm inequality lemma. (Contributed by metakunt, 12-May-2024)

Ref Expression
Hypothesis lcmineqlem19.1 φ N
Assertion lcmineqlem19 φ N 2 N + 1 ( 2 N N) lcm _ 1 2 N + 1

Proof

Step Hyp Ref Expression
1 lcmineqlem19.1 φ N
2 2nn 2
3 2 a1i φ 2
4 3 1 nnmulcld φ 2 N
5 4 peano2nnd φ 2 N + 1
6 1 nnnn0d φ N 0
7 1 nnred φ N
8 2re 2
9 8 a1i φ 2
10 6 nn0ge0d φ 0 N
11 3 nnge1d φ 1 2
12 7 9 10 11 lemulge12d φ N 2 N
13 4 6 12 bccl2d φ ( 2 N N)
14 fz1ssnn 1 2 N
15 fzfi 1 2 N Fin
16 lcmfnncl 1 2 N 1 2 N Fin lcm _ 1 2 N
17 14 15 16 mp2an lcm _ 1 2 N
18 17 a1i φ lcm _ 1 2 N
19 fz1ssnn 1 2 N + 1
20 fzfi 1 2 N + 1 Fin
21 lcmfnncl 1 2 N + 1 1 2 N + 1 Fin lcm _ 1 2 N + 1
22 19 20 21 mp2an lcm _ 1 2 N + 1
23 22 a1i φ lcm _ 1 2 N + 1
24 1 4 12 lcmineqlem16 φ N ( 2 N N) lcm _ 1 2 N
25 1 lcmineqlem18 φ N + 1 ( 2 N + 1 N + 1 ) = 2 N + 1 ( 2 N N)
26 1 peano2nnd φ N + 1
27 9 7 remulcld φ 2 N
28 1red φ 1
29 7 27 28 12 leadd1dd φ N + 1 2 N + 1
30 26 5 29 lcmineqlem16 φ N + 1 ( 2 N + 1 N + 1 ) lcm _ 1 2 N + 1
31 25 30 eqbrtrrd φ 2 N + 1 ( 2 N N) lcm _ 1 2 N + 1
32 18 nnzd φ lcm _ 1 2 N
33 5 nnzd φ 2 N + 1
34 32 33 jca φ lcm _ 1 2 N 2 N + 1
35 dvdslcm lcm _ 1 2 N 2 N + 1 lcm _ 1 2 N lcm _ 1 2 N lcm 2 N + 1 2 N + 1 lcm _ 1 2 N lcm 2 N + 1
36 34 35 syl φ lcm _ 1 2 N lcm _ 1 2 N lcm 2 N + 1 2 N + 1 lcm _ 1 2 N lcm 2 N + 1
37 36 simpld φ lcm _ 1 2 N lcm _ 1 2 N lcm 2 N + 1
38 5 lcmfunnnd φ lcm _ 1 2 N + 1 = lcm _ 1 2 N + 1 - 1 lcm 2 N + 1
39 27 recnd φ 2 N
40 1cnd φ 1
41 39 40 pncand φ 2 N + 1 - 1 = 2 N
42 41 oveq2d φ 1 2 N + 1 - 1 = 1 2 N
43 42 fveq2d φ lcm _ 1 2 N + 1 - 1 = lcm _ 1 2 N
44 43 oveq1d φ lcm _ 1 2 N + 1 - 1 lcm 2 N + 1 = lcm _ 1 2 N lcm 2 N + 1
45 38 44 eqtrd φ lcm _ 1 2 N + 1 = lcm _ 1 2 N lcm 2 N + 1
46 37 45 breqtrrd φ lcm _ 1 2 N lcm _ 1 2 N + 1
47 1 nnzd φ N
48 2z 2
49 1z 1
50 gcdaddm 2 N 1 N gcd 1 = N gcd 1 + 2 N
51 48 49 50 mp3an13 N N gcd 1 = N gcd 1 + 2 N
52 47 51 syl φ N gcd 1 = N gcd 1 + 2 N
53 40 39 addcomd φ 1 + 2 N = 2 N + 1
54 53 oveq2d φ N gcd 1 + 2 N = N gcd 2 N + 1
55 52 54 eqtrd φ N gcd 1 = N gcd 2 N + 1
56 gcd1 N N gcd 1 = 1
57 47 56 syl φ N gcd 1 = 1
58 55 57 eqtr3d φ N gcd 2 N + 1 = 1
59 1 5 13 18 23 24 31 46 58 lcmineqlem14 φ N 2 N + 1 ( 2 N N) lcm _ 1 2 N + 1