Metamath Proof Explorer


Theorem lcmineqlem18

Description: Technical lemma to shift factors in binomial coefficient. (Contributed by metakunt, 12-May-2024)

Ref Expression
Hypothesis lcmineqlem18.1 φ N
Assertion lcmineqlem18 φ N + 1 ( 2 N + 1 N + 1 ) = 2 N + 1 ( 2 N N)

Proof

Step Hyp Ref Expression
1 lcmineqlem18.1 φ N
2 0zd φ 0
3 2z 2
4 3 a1i φ 2
5 1 nnzd φ N
6 4 5 zmulcld φ 2 N
7 6 peano2zd φ 2 N + 1
8 5 peano2zd φ N + 1
9 1 nnred φ N
10 1red φ 1
11 1 nnnn0d φ N 0
12 11 nn0ge0d φ 0 N
13 0le1 0 1
14 13 a1i φ 0 1
15 9 10 12 14 addge0d φ 0 N + 1
16 9 10 readdcld φ N + 1
17 16 9 addge01d φ 0 N N + 1 N + 1 + N
18 12 17 mpbid φ N + 1 N + 1 + N
19 9 recnd φ N
20 1cnd φ 1
21 19 20 19 add32d φ N + 1 + N = N + N + 1
22 19 2timesd φ 2 N = N + N
23 22 oveq1d φ 2 N + 1 = N + N + 1
24 23 eqcomd φ N + N + 1 = 2 N + 1
25 21 24 eqtrd φ N + 1 + N = 2 N + 1
26 18 25 breqtrd φ N + 1 2 N + 1
27 2 7 8 15 26 elfzd φ N + 1 0 2 N + 1
28 bcval2 N + 1 0 2 N + 1 ( 2 N + 1 N + 1 ) = 2 N + 1 ! 2 N + 1 - N + 1 ! N + 1 !
29 27 28 syl φ ( 2 N + 1 N + 1 ) = 2 N + 1 ! 2 N + 1 - N + 1 ! N + 1 !
30 6 zcnd φ 2 N
31 30 20 19 20 addsub4d φ 2 N + 1 - N + 1 = 2 N N + 1 - 1
32 22 oveq1d φ 2 N N = N + N - N
33 19 19 pncand φ N + N - N = N
34 32 33 eqtrd φ 2 N N = N
35 1m1e0 1 1 = 0
36 35 a1i φ 1 1 = 0
37 34 36 oveq12d φ 2 N N + 1 - 1 = N + 0
38 19 addid1d φ N + 0 = N
39 37 38 eqtrd φ 2 N N + 1 - 1 = N
40 31 39 eqtrd φ 2 N + 1 - N + 1 = N
41 40 fveq2d φ 2 N + 1 - N + 1 ! = N !
42 41 oveq1d φ 2 N + 1 - N + 1 ! N + 1 ! = N ! N + 1 !
43 42 oveq2d φ 2 N + 1 ! 2 N + 1 - N + 1 ! N + 1 ! = 2 N + 1 ! N ! N + 1 !
44 29 43 eqtrd φ ( 2 N + 1 N + 1 ) = 2 N + 1 ! N ! N + 1 !
45 faccl N 0 N !
46 11 45 syl φ N !
47 46 nncnd φ N !
48 1nn0 1 0
49 48 a1i φ 1 0
50 11 49 nn0addcld φ N + 1 0
51 faccl N + 1 0 N + 1 !
52 50 51 syl φ N + 1 !
53 52 nncnd φ N + 1 !
54 47 53 mulcomd φ N ! N + 1 ! = N + 1 ! N !
55 facp1 N 0 N + 1 ! = N ! N + 1
56 11 55 syl φ N + 1 ! = N ! N + 1
57 19 20 addcld φ N + 1
58 47 57 mulcomd φ N ! N + 1 = N + 1 N !
59 56 58 eqtrd φ N + 1 ! = N + 1 N !
60 59 oveq1d φ N + 1 ! N ! = N + 1 N ! N !
61 57 47 47 mulassd φ N + 1 N ! N ! = N + 1 N ! N !
62 60 61 eqtrd φ N + 1 ! N ! = N + 1 N ! N !
63 54 62 eqtrd φ N ! N + 1 ! = N + 1 N ! N !
64 63 oveq2d φ 2 N + 1 ! N ! N + 1 ! = 2 N + 1 ! N + 1 N ! N !
65 44 64 eqtrd φ ( 2 N + 1 N + 1 ) = 2 N + 1 ! N + 1 N ! N !
66 2nn0 2 0
67 66 a1i φ 2 0
68 67 11 nn0mulcld φ 2 N 0
69 facp1 2 N 0 2 N + 1 ! = 2 N ! 2 N + 1
70 68 69 syl φ 2 N + 1 ! = 2 N ! 2 N + 1
71 faccl 2 N 0 2 N !
72 68 71 syl φ 2 N !
73 72 nncnd φ 2 N !
74 30 20 addcld φ 2 N + 1
75 73 74 mulcomd φ 2 N ! 2 N + 1 = 2 N + 1 2 N !
76 70 75 eqtrd φ 2 N + 1 ! = 2 N + 1 2 N !
77 76 oveq1d φ 2 N + 1 ! N + 1 N ! N ! = 2 N + 1 2 N ! N + 1 N ! N !
78 65 77 eqtrd φ ( 2 N + 1 N + 1 ) = 2 N + 1 2 N ! N + 1 N ! N !
79 78 oveq2d φ N + 1 ( 2 N + 1 N + 1 ) = N + 1 2 N + 1 2 N ! N + 1 N ! N !
80 74 73 mulcld φ 2 N + 1 2 N !
81 47 47 mulcld φ N ! N !
82 57 81 mulcld φ N + 1 N ! N !
83 1 peano2nnd φ N + 1
84 83 nnne0d φ N + 1 0
85 46 nnne0d φ N ! 0
86 47 47 85 85 mulne0d φ N ! N ! 0
87 57 81 84 86 mulne0d φ N + 1 N ! N ! 0
88 57 80 82 87 divassd φ N + 1 2 N + 1 2 N ! N + 1 N ! N ! = N + 1 2 N + 1 2 N ! N + 1 N ! N !
89 88 eqcomd φ N + 1 2 N + 1 2 N ! N + 1 N ! N ! = N + 1 2 N + 1 2 N ! N + 1 N ! N !
90 79 89 eqtrd φ N + 1 ( 2 N + 1 N + 1 ) = N + 1 2 N + 1 2 N ! N + 1 N ! N !
91 57 57 80 81 84 86 divmuldivd φ N + 1 N + 1 2 N + 1 2 N ! N ! N ! = N + 1 2 N + 1 2 N ! N + 1 N ! N !
92 91 eqcomd φ N + 1 2 N + 1 2 N ! N + 1 N ! N ! = N + 1 N + 1 2 N + 1 2 N ! N ! N !
93 90 92 eqtrd φ N + 1 ( 2 N + 1 N + 1 ) = N + 1 N + 1 2 N + 1 2 N ! N ! N !
94 57 84 dividd φ N + 1 N + 1 = 1
95 94 oveq1d φ N + 1 N + 1 2 N + 1 2 N ! N ! N ! = 1 2 N + 1 2 N ! N ! N !
96 80 81 86 divcld φ 2 N + 1 2 N ! N ! N !
97 96 mulid2d φ 1 2 N + 1 2 N ! N ! N ! = 2 N + 1 2 N ! N ! N !
98 95 97 eqtrd φ N + 1 N + 1 2 N + 1 2 N ! N ! N ! = 2 N + 1 2 N ! N ! N !
99 93 98 eqtrd φ N + 1 ( 2 N + 1 N + 1 ) = 2 N + 1 2 N ! N ! N !
100 74 73 81 86 divassd φ 2 N + 1 2 N ! N ! N ! = 2 N + 1 2 N ! N ! N !
101 99 100 eqtrd φ N + 1 ( 2 N + 1 N + 1 ) = 2 N + 1 2 N ! N ! N !
102 9 9 addge01d φ 0 N N N + N
103 22 breq2d φ N 2 N N N + N
104 102 103 bitr4d φ 0 N N 2 N
105 12 104 mpbid φ N 2 N
106 2 6 5 12 105 elfzd φ N 0 2 N
107 bcval2 N 0 2 N ( 2 N N) = 2 N ! 2 N N ! N !
108 106 107 syl φ ( 2 N N) = 2 N ! 2 N N ! N !
109 34 fveq2d φ 2 N N ! = N !
110 109 oveq1d φ 2 N N ! N ! = N ! N !
111 110 oveq2d φ 2 N ! 2 N N ! N ! = 2 N ! N ! N !
112 108 111 eqtrd φ ( 2 N N) = 2 N ! N ! N !
113 112 oveq2d φ 2 N + 1 ( 2 N N) = 2 N + 1 2 N ! N ! N !
114 113 eqcomd φ 2 N + 1 2 N ! N ! N ! = 2 N + 1 ( 2 N N)
115 101 114 eqtrd φ N + 1 ( 2 N + 1 N + 1 ) = 2 N + 1 ( 2 N N)