Step |
Hyp |
Ref |
Expression |
1 |
|
lcmineqlem19.1 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
2 |
|
2nn |
⊢ 2 ∈ ℕ |
3 |
2
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℕ ) |
4 |
3 1
|
nnmulcld |
⊢ ( 𝜑 → ( 2 · 𝑁 ) ∈ ℕ ) |
5 |
4
|
peano2nnd |
⊢ ( 𝜑 → ( ( 2 · 𝑁 ) + 1 ) ∈ ℕ ) |
6 |
1
|
nnnn0d |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
7 |
1
|
nnred |
⊢ ( 𝜑 → 𝑁 ∈ ℝ ) |
8 |
|
2re |
⊢ 2 ∈ ℝ |
9 |
8
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℝ ) |
10 |
6
|
nn0ge0d |
⊢ ( 𝜑 → 0 ≤ 𝑁 ) |
11 |
3
|
nnge1d |
⊢ ( 𝜑 → 1 ≤ 2 ) |
12 |
7 9 10 11
|
lemulge12d |
⊢ ( 𝜑 → 𝑁 ≤ ( 2 · 𝑁 ) ) |
13 |
4 6 12
|
bccl2d |
⊢ ( 𝜑 → ( ( 2 · 𝑁 ) C 𝑁 ) ∈ ℕ ) |
14 |
|
fz1ssnn |
⊢ ( 1 ... ( 2 · 𝑁 ) ) ⊆ ℕ |
15 |
|
fzfi |
⊢ ( 1 ... ( 2 · 𝑁 ) ) ∈ Fin |
16 |
|
lcmfnncl |
⊢ ( ( ( 1 ... ( 2 · 𝑁 ) ) ⊆ ℕ ∧ ( 1 ... ( 2 · 𝑁 ) ) ∈ Fin ) → ( lcm ‘ ( 1 ... ( 2 · 𝑁 ) ) ) ∈ ℕ ) |
17 |
14 15 16
|
mp2an |
⊢ ( lcm ‘ ( 1 ... ( 2 · 𝑁 ) ) ) ∈ ℕ |
18 |
17
|
a1i |
⊢ ( 𝜑 → ( lcm ‘ ( 1 ... ( 2 · 𝑁 ) ) ) ∈ ℕ ) |
19 |
|
fz1ssnn |
⊢ ( 1 ... ( ( 2 · 𝑁 ) + 1 ) ) ⊆ ℕ |
20 |
|
fzfi |
⊢ ( 1 ... ( ( 2 · 𝑁 ) + 1 ) ) ∈ Fin |
21 |
|
lcmfnncl |
⊢ ( ( ( 1 ... ( ( 2 · 𝑁 ) + 1 ) ) ⊆ ℕ ∧ ( 1 ... ( ( 2 · 𝑁 ) + 1 ) ) ∈ Fin ) → ( lcm ‘ ( 1 ... ( ( 2 · 𝑁 ) + 1 ) ) ) ∈ ℕ ) |
22 |
19 20 21
|
mp2an |
⊢ ( lcm ‘ ( 1 ... ( ( 2 · 𝑁 ) + 1 ) ) ) ∈ ℕ |
23 |
22
|
a1i |
⊢ ( 𝜑 → ( lcm ‘ ( 1 ... ( ( 2 · 𝑁 ) + 1 ) ) ) ∈ ℕ ) |
24 |
1 4 12
|
lcmineqlem16 |
⊢ ( 𝜑 → ( 𝑁 · ( ( 2 · 𝑁 ) C 𝑁 ) ) ∥ ( lcm ‘ ( 1 ... ( 2 · 𝑁 ) ) ) ) |
25 |
1
|
lcmineqlem18 |
⊢ ( 𝜑 → ( ( 𝑁 + 1 ) · ( ( ( 2 · 𝑁 ) + 1 ) C ( 𝑁 + 1 ) ) ) = ( ( ( 2 · 𝑁 ) + 1 ) · ( ( 2 · 𝑁 ) C 𝑁 ) ) ) |
26 |
1
|
peano2nnd |
⊢ ( 𝜑 → ( 𝑁 + 1 ) ∈ ℕ ) |
27 |
9 7
|
remulcld |
⊢ ( 𝜑 → ( 2 · 𝑁 ) ∈ ℝ ) |
28 |
|
1red |
⊢ ( 𝜑 → 1 ∈ ℝ ) |
29 |
7 27 28 12
|
leadd1dd |
⊢ ( 𝜑 → ( 𝑁 + 1 ) ≤ ( ( 2 · 𝑁 ) + 1 ) ) |
30 |
26 5 29
|
lcmineqlem16 |
⊢ ( 𝜑 → ( ( 𝑁 + 1 ) · ( ( ( 2 · 𝑁 ) + 1 ) C ( 𝑁 + 1 ) ) ) ∥ ( lcm ‘ ( 1 ... ( ( 2 · 𝑁 ) + 1 ) ) ) ) |
31 |
25 30
|
eqbrtrrd |
⊢ ( 𝜑 → ( ( ( 2 · 𝑁 ) + 1 ) · ( ( 2 · 𝑁 ) C 𝑁 ) ) ∥ ( lcm ‘ ( 1 ... ( ( 2 · 𝑁 ) + 1 ) ) ) ) |
32 |
18
|
nnzd |
⊢ ( 𝜑 → ( lcm ‘ ( 1 ... ( 2 · 𝑁 ) ) ) ∈ ℤ ) |
33 |
5
|
nnzd |
⊢ ( 𝜑 → ( ( 2 · 𝑁 ) + 1 ) ∈ ℤ ) |
34 |
32 33
|
jca |
⊢ ( 𝜑 → ( ( lcm ‘ ( 1 ... ( 2 · 𝑁 ) ) ) ∈ ℤ ∧ ( ( 2 · 𝑁 ) + 1 ) ∈ ℤ ) ) |
35 |
|
dvdslcm |
⊢ ( ( ( lcm ‘ ( 1 ... ( 2 · 𝑁 ) ) ) ∈ ℤ ∧ ( ( 2 · 𝑁 ) + 1 ) ∈ ℤ ) → ( ( lcm ‘ ( 1 ... ( 2 · 𝑁 ) ) ) ∥ ( ( lcm ‘ ( 1 ... ( 2 · 𝑁 ) ) ) lcm ( ( 2 · 𝑁 ) + 1 ) ) ∧ ( ( 2 · 𝑁 ) + 1 ) ∥ ( ( lcm ‘ ( 1 ... ( 2 · 𝑁 ) ) ) lcm ( ( 2 · 𝑁 ) + 1 ) ) ) ) |
36 |
34 35
|
syl |
⊢ ( 𝜑 → ( ( lcm ‘ ( 1 ... ( 2 · 𝑁 ) ) ) ∥ ( ( lcm ‘ ( 1 ... ( 2 · 𝑁 ) ) ) lcm ( ( 2 · 𝑁 ) + 1 ) ) ∧ ( ( 2 · 𝑁 ) + 1 ) ∥ ( ( lcm ‘ ( 1 ... ( 2 · 𝑁 ) ) ) lcm ( ( 2 · 𝑁 ) + 1 ) ) ) ) |
37 |
36
|
simpld |
⊢ ( 𝜑 → ( lcm ‘ ( 1 ... ( 2 · 𝑁 ) ) ) ∥ ( ( lcm ‘ ( 1 ... ( 2 · 𝑁 ) ) ) lcm ( ( 2 · 𝑁 ) + 1 ) ) ) |
38 |
5
|
lcmfunnnd |
⊢ ( 𝜑 → ( lcm ‘ ( 1 ... ( ( 2 · 𝑁 ) + 1 ) ) ) = ( ( lcm ‘ ( 1 ... ( ( ( 2 · 𝑁 ) + 1 ) − 1 ) ) ) lcm ( ( 2 · 𝑁 ) + 1 ) ) ) |
39 |
27
|
recnd |
⊢ ( 𝜑 → ( 2 · 𝑁 ) ∈ ℂ ) |
40 |
|
1cnd |
⊢ ( 𝜑 → 1 ∈ ℂ ) |
41 |
39 40
|
pncand |
⊢ ( 𝜑 → ( ( ( 2 · 𝑁 ) + 1 ) − 1 ) = ( 2 · 𝑁 ) ) |
42 |
41
|
oveq2d |
⊢ ( 𝜑 → ( 1 ... ( ( ( 2 · 𝑁 ) + 1 ) − 1 ) ) = ( 1 ... ( 2 · 𝑁 ) ) ) |
43 |
42
|
fveq2d |
⊢ ( 𝜑 → ( lcm ‘ ( 1 ... ( ( ( 2 · 𝑁 ) + 1 ) − 1 ) ) ) = ( lcm ‘ ( 1 ... ( 2 · 𝑁 ) ) ) ) |
44 |
43
|
oveq1d |
⊢ ( 𝜑 → ( ( lcm ‘ ( 1 ... ( ( ( 2 · 𝑁 ) + 1 ) − 1 ) ) ) lcm ( ( 2 · 𝑁 ) + 1 ) ) = ( ( lcm ‘ ( 1 ... ( 2 · 𝑁 ) ) ) lcm ( ( 2 · 𝑁 ) + 1 ) ) ) |
45 |
38 44
|
eqtrd |
⊢ ( 𝜑 → ( lcm ‘ ( 1 ... ( ( 2 · 𝑁 ) + 1 ) ) ) = ( ( lcm ‘ ( 1 ... ( 2 · 𝑁 ) ) ) lcm ( ( 2 · 𝑁 ) + 1 ) ) ) |
46 |
37 45
|
breqtrrd |
⊢ ( 𝜑 → ( lcm ‘ ( 1 ... ( 2 · 𝑁 ) ) ) ∥ ( lcm ‘ ( 1 ... ( ( 2 · 𝑁 ) + 1 ) ) ) ) |
47 |
1
|
nnzd |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
48 |
|
2z |
⊢ 2 ∈ ℤ |
49 |
|
1z |
⊢ 1 ∈ ℤ |
50 |
|
gcdaddm |
⊢ ( ( 2 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 1 ∈ ℤ ) → ( 𝑁 gcd 1 ) = ( 𝑁 gcd ( 1 + ( 2 · 𝑁 ) ) ) ) |
51 |
48 49 50
|
mp3an13 |
⊢ ( 𝑁 ∈ ℤ → ( 𝑁 gcd 1 ) = ( 𝑁 gcd ( 1 + ( 2 · 𝑁 ) ) ) ) |
52 |
47 51
|
syl |
⊢ ( 𝜑 → ( 𝑁 gcd 1 ) = ( 𝑁 gcd ( 1 + ( 2 · 𝑁 ) ) ) ) |
53 |
40 39
|
addcomd |
⊢ ( 𝜑 → ( 1 + ( 2 · 𝑁 ) ) = ( ( 2 · 𝑁 ) + 1 ) ) |
54 |
53
|
oveq2d |
⊢ ( 𝜑 → ( 𝑁 gcd ( 1 + ( 2 · 𝑁 ) ) ) = ( 𝑁 gcd ( ( 2 · 𝑁 ) + 1 ) ) ) |
55 |
52 54
|
eqtrd |
⊢ ( 𝜑 → ( 𝑁 gcd 1 ) = ( 𝑁 gcd ( ( 2 · 𝑁 ) + 1 ) ) ) |
56 |
|
gcd1 |
⊢ ( 𝑁 ∈ ℤ → ( 𝑁 gcd 1 ) = 1 ) |
57 |
47 56
|
syl |
⊢ ( 𝜑 → ( 𝑁 gcd 1 ) = 1 ) |
58 |
55 57
|
eqtr3d |
⊢ ( 𝜑 → ( 𝑁 gcd ( ( 2 · 𝑁 ) + 1 ) ) = 1 ) |
59 |
1 5 13 18 23 24 31 46 58
|
lcmineqlem14 |
⊢ ( 𝜑 → ( ( 𝑁 · ( ( 2 · 𝑁 ) + 1 ) ) · ( ( 2 · 𝑁 ) C 𝑁 ) ) ∥ ( lcm ‘ ( 1 ... ( ( 2 · 𝑁 ) + 1 ) ) ) ) |