Metamath Proof Explorer


Theorem lduallmod

Description: The dual of a left module is also a left module. (Contributed by NM, 22-Oct-2014)

Ref Expression
Hypotheses lduallmod.d D=LDualW
lduallmod.w φWLMod
Assertion lduallmod φDLMod

Proof

Step Hyp Ref Expression
1 lduallmod.d D=LDualW
2 lduallmod.w φWLMod
3 eqid BaseW=BaseW
4 eqid f+W=f+W
5 eqid LFnlW=LFnlW
6 eqid ScalarW=ScalarW
7 eqid BaseScalarW=BaseScalarW
8 eqid ScalarW=ScalarW
9 eqid opprScalarW=opprScalarW
10 eqid D=D
11 1 2 3 4 5 6 7 8 9 10 lduallmodlem φDLMod