Metamath Proof Explorer


Theorem ldualvbase

Description: The vectors of a dual space are functionals of the original space. (Contributed by NM, 18-Oct-2014)

Ref Expression
Hypotheses ldualvbase.f F = LFnl W
ldualvbase.d D = LDual W
ldualvbase.v V = Base D
ldualvbase.w φ W X
Assertion ldualvbase φ V = F

Proof

Step Hyp Ref Expression
1 ldualvbase.f F = LFnl W
2 ldualvbase.d D = LDual W
3 ldualvbase.v V = Base D
4 ldualvbase.w φ W X
5 eqid Base W = Base W
6 eqid + Scalar W = + Scalar W
7 eqid f + Scalar W F × F = f + Scalar W F × F
8 eqid Scalar W = Scalar W
9 eqid Base Scalar W = Base Scalar W
10 eqid Scalar W = Scalar W
11 eqid opp r Scalar W = opp r Scalar W
12 eqid k Base Scalar W , f F f Scalar W f Base W × k = k Base Scalar W , f F f Scalar W f Base W × k
13 5 6 7 1 2 8 9 10 11 12 4 ldualset φ D = Base ndx F + ndx f + Scalar W F × F Scalar ndx opp r Scalar W ndx k Base Scalar W , f F f Scalar W f Base W × k
14 13 fveq2d φ Base D = Base Base ndx F + ndx f + Scalar W F × F Scalar ndx opp r Scalar W ndx k Base Scalar W , f F f Scalar W f Base W × k
15 1 fvexi F V
16 eqid Base ndx F + ndx f + Scalar W F × F Scalar ndx opp r Scalar W ndx k Base Scalar W , f F f Scalar W f Base W × k = Base ndx F + ndx f + Scalar W F × F Scalar ndx opp r Scalar W ndx k Base Scalar W , f F f Scalar W f Base W × k
17 16 lmodbase F V F = Base Base ndx F + ndx f + Scalar W F × F Scalar ndx opp r Scalar W ndx k Base Scalar W , f F f Scalar W f Base W × k
18 15 17 ax-mp F = Base Base ndx F + ndx f + Scalar W F × F Scalar ndx opp r Scalar W ndx k Base Scalar W , f F f Scalar W f Base W × k
19 14 3 18 3eqtr4g φ V = F