Metamath Proof Explorer


Theorem le2addd

Description: Adding both side of two inequalities. (Contributed by Mario Carneiro, 27-May-2016) (Proof shortened by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses leidd.1 φ A
ltnegd.2 φ B
ltadd1d.3 φ C
lt2addd.4 φ D
le2addd.5 φ A C
le2addd.6 φ B D
Assertion le2addd φ A + B C + D

Proof

Step Hyp Ref Expression
1 leidd.1 φ A
2 ltnegd.2 φ B
3 ltadd1d.3 φ C
4 lt2addd.4 φ D
5 le2addd.5 φ A C
6 le2addd.6 φ B D
7 1 2 readdcld φ A + B
8 3 2 readdcld φ C + B
9 3 4 readdcld φ C + D
10 1 3 2 5 leadd1dd φ A + B C + B
11 2 4 3 6 leadd2dd φ C + B C + D
12 7 8 9 10 11 letrd φ A + B C + D