Metamath Proof Explorer


Theorem leat2

Description: A nonzero poset element less than or equal to an atom equals the atom. (Contributed by NM, 6-Mar-2013)

Ref Expression
Hypotheses leatom.b B=BaseK
leatom.l ˙=K
leatom.z 0˙=0.K
leatom.a A=AtomsK
Assertion leat2 KOPXBPAX0˙X˙PX=P

Proof

Step Hyp Ref Expression
1 leatom.b B=BaseK
2 leatom.l ˙=K
3 leatom.z 0˙=0.K
4 leatom.a A=AtomsK
5 1 2 3 4 leatb KOPXBPAX˙PX=PX=0˙
6 orcom X=PX=0˙X=0˙X=P
7 neor X=0˙X=PX0˙X=P
8 6 7 bitri X=PX=0˙X0˙X=P
9 5 8 bitrdi KOPXBPAX˙PX0˙X=P
10 9 biimpd KOPXBPAX˙PX0˙X=P
11 10 com23 KOPXBPAX0˙X˙PX=P
12 11 imp32 KOPXBPAX0˙X˙PX=P