Metamath Proof Explorer


Theorem lediv23d

Description: Swap denominator with other side of 'less than or equal to'. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses ltdiv23d.1 φA
ltdiv23d.2 φB+
ltdiv23d.3 φC+
lediv23d.4 φABC
Assertion lediv23d φACB

Proof

Step Hyp Ref Expression
1 ltdiv23d.1 φA
2 ltdiv23d.2 φB+
3 ltdiv23d.3 φC+
4 lediv23d.4 φABC
5 2 rpregt0d φB0<B
6 3 rpregt0d φC0<C
7 lediv23 AB0<BC0<CABCACB
8 1 5 6 7 syl3anc φABCACB
9 4 8 mpbid φACB