Metamath Proof Explorer


Theorem lediv2d

Description: Division of a positive number by both sides of 'less than or equal to'. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses rpred.1 φA+
rpaddcld.1 φB+
ltdiv2d.3 φC+
Assertion lediv2d φABCBCA

Proof

Step Hyp Ref Expression
1 rpred.1 φA+
2 rpaddcld.1 φB+
3 ltdiv2d.3 φC+
4 1 rpregt0d φA0<A
5 2 rpregt0d φB0<B
6 3 rpregt0d φC0<C
7 lediv2 A0<AB0<BC0<CABCBCA
8 4 5 6 7 syl3anc φABCBCA