Metamath Proof Explorer


Theorem ledivdivd

Description: Invert ratios of positive numbers and swap their ordering. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses rpred.1 φA+
rpaddcld.1 φB+
ltdiv2d.3 φC+
ledivdivd.4 φD+
ledivdivd.5 φABCD
Assertion ledivdivd φDCBA

Proof

Step Hyp Ref Expression
1 rpred.1 φA+
2 rpaddcld.1 φB+
3 ltdiv2d.3 φC+
4 ledivdivd.4 φD+
5 ledivdivd.5 φABCD
6 1 rpregt0d φA0<A
7 2 rpregt0d φB0<B
8 3 rpregt0d φC0<C
9 4 rpregt0d φD0<D
10 ledivdiv A0<AB0<BC0<CD0<DABCDDCBA
11 6 7 8 9 10 syl22anc φABCDDCBA
12 5 11 mpbid φDCBA