Metamath Proof Explorer
Description: Specialization of breq2d to reals and less than. (Contributed by Stanislas Polu, 9-Mar-2020)
|
|
Ref |
Expression |
|
Hypotheses |
leeq2d.1 |
|
|
|
leeq2d.2 |
|
|
|
leeq2d.3 |
|
|
|
leeq2d.4 |
|
|
Assertion |
leeq2d |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
leeq2d.1 |
|
2 |
|
leeq2d.2 |
|
3 |
|
leeq2d.3 |
|
4 |
|
leeq2d.4 |
|
5 |
1 2
|
breqtrd |
|