Metamath Proof Explorer


Theorem leeq2d

Description: Specialization of breq2d to reals and less than. (Contributed by Stanislas Polu, 9-Mar-2020)

Ref Expression
Hypotheses leeq2d.1 φAC
leeq2d.2 φC=D
leeq2d.3 φA
leeq2d.4 φC
Assertion leeq2d φAD

Proof

Step Hyp Ref Expression
1 leeq2d.1 φAC
2 leeq2d.2 φC=D
3 leeq2d.3 φA
4 leeq2d.4 φC
5 1 2 breqtrd φAD