Metamath Proof Explorer


Theorem lemul2ad

Description: Multiplication of both sides of 'less than or equal to' by a nonnegative number. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses ltp1d.1 φA
divgt0d.2 φB
lemul1ad.3 φC
lemul1ad.4 φ0C
lemul1ad.5 φAB
Assertion lemul2ad φCACB

Proof

Step Hyp Ref Expression
1 ltp1d.1 φA
2 divgt0d.2 φB
3 lemul1ad.3 φC
4 lemul1ad.4 φ0C
5 lemul1ad.5 φAB
6 3 4 jca φC0C
7 lemul2a ABC0CABCACB
8 1 2 6 5 7 syl31anc φCACB