Metamath Proof Explorer


Theorem lenltd

Description: 'Less than or equal to' in terms of 'less than'. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses ltd.1 φA
ltd.2 φB
Assertion lenltd φAB¬B<A

Proof

Step Hyp Ref Expression
1 ltd.1 φA
2 ltd.2 φB
3 lenlt ABAB¬B<A
4 1 2 3 syl2anc φAB¬B<A