Metamath Proof Explorer


Theorem lerecd

Description: The reciprocal of both sides of 'less than or equal to'. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses rpred.1 φA+
rpaddcld.1 φB+
Assertion lerecd φAB1B1A

Proof

Step Hyp Ref Expression
1 rpred.1 φA+
2 rpaddcld.1 φB+
3 1 rpregt0d φA0<A
4 2 rpregt0d φB0<B
5 lerec A0<AB0<BAB1B1A
6 3 4 5 syl2anc φAB1B1A