Metamath Proof Explorer


Theorem lhp1cvr

Description: The lattice unity covers a co-atom (lattice hyperplane). (Contributed by NM, 18-May-2012)

Ref Expression
Hypotheses lhp1cvr.u 1˙=1.K
lhp1cvr.c C=K
lhp1cvr.h H=LHypK
Assertion lhp1cvr KAWHWC1˙

Proof

Step Hyp Ref Expression
1 lhp1cvr.u 1˙=1.K
2 lhp1cvr.c C=K
3 lhp1cvr.h H=LHypK
4 eqid BaseK=BaseK
5 4 1 2 3 islhp KAWHWBaseKWC1˙
6 5 simplbda KAWHWC1˙