Metamath Proof Explorer


Theorem limcmptdm

Description: The domain of a maps-to function with a limit. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses limcmptdm.f F=xAB
limcmptdm.b φxAB
limcmptdm.c φCFlimD
Assertion limcmptdm φA

Proof

Step Hyp Ref Expression
1 limcmptdm.f F=xAB
2 limcmptdm.b φxAB
3 limcmptdm.c φCFlimD
4 1 2 dmmptd φdomF=A
5 limcrcl CFlimDF:domFdomFD
6 3 5 syl φF:domFdomFD
7 6 simp2d φdomF
8 4 7 eqsstrrd φA