Metamath Proof Explorer


Theorem liminfresicompt

Description: The inferior limit doesn't change when a function is restricted to the upper part of the reals. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses liminfresicompt.1 φM
liminfresicompt.2 Z=M+∞
liminfresicompt.3 φAV
Assertion liminfresicompt φlim infxAZB=lim infxAB

Proof

Step Hyp Ref Expression
1 liminfresicompt.1 φM
2 liminfresicompt.2 Z=M+∞
3 liminfresicompt.3 φAV
4 resmpt3 xABZ=xAZB
5 4 eqcomi xAZB=xABZ
6 5 a1i φxAZB=xABZ
7 6 fveq2d φlim infxAZB=lim infxABZ
8 3 mptexd φxABV
9 1 2 8 liminfresico φlim infxABZ=lim infxAB
10 7 9 eqtrd φlim infxAZB=lim infxAB