Metamath Proof Explorer


Theorem liminfresicompt

Description: The inferior limit doesn't change when a function is restricted to the upper part of the reals. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses liminfresicompt.1 φ M
liminfresicompt.2 Z = M +∞
liminfresicompt.3 φ A V
Assertion liminfresicompt φ lim inf x A Z B = lim inf x A B

Proof

Step Hyp Ref Expression
1 liminfresicompt.1 φ M
2 liminfresicompt.2 Z = M +∞
3 liminfresicompt.3 φ A V
4 resmpt3 x A B Z = x A Z B
5 4 eqcomi x A Z B = x A B Z
6 5 a1i φ x A Z B = x A B Z
7 6 fveq2d φ lim inf x A Z B = lim inf x A B Z
8 3 mptexd φ x A B V
9 1 2 8 liminfresico φ lim inf x A B Z = lim inf x A B
10 7 9 eqtrd φ lim inf x A Z B = lim inf x A B