Metamath Proof Explorer


Theorem limsuc

Description: The successor of a member of a limit ordinal is also a member. (Contributed by NM, 3-Sep-2003)

Ref Expression
Assertion limsuc LimABAsucBA

Proof

Step Hyp Ref Expression
1 dflim4 LimAOrdAAxAsucxA
2 suceq x=Bsucx=sucB
3 2 eleq1d x=BsucxAsucBA
4 3 rspccv xAsucxABAsucBA
5 4 3ad2ant3 OrdAAxAsucxABAsucBA
6 1 5 sylbi LimABAsucBA
7 limord LimAOrdA
8 ordtr OrdATrA
9 trsuc TrAsucBABA
10 9 ex TrAsucBABA
11 7 8 10 3syl LimAsucBABA
12 6 11 impbid LimABAsucBA