Description: The successor of a member of a limit ordinal is also a member. (Contributed by NM, 3-Sep-2003)
Ref | Expression | ||
---|---|---|---|
Assertion | limsuc | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dflim4 | |
|
2 | suceq | |
|
3 | 2 | eleq1d | |
4 | 3 | rspccv | |
5 | 4 | 3ad2ant3 | |
6 | 1 5 | sylbi | |
7 | limord | |
|
8 | ordtr | |
|
9 | trsuc | |
|
10 | 9 | ex | |
11 | 7 8 10 | 3syl | |
12 | 6 11 | impbid | |