Metamath Proof Explorer


Theorem llnset

Description: The set of lattice lines in a Hilbert lattice. (Contributed by NM, 16-Jun-2012)

Ref Expression
Hypotheses llnset.b B=BaseK
llnset.c C=K
llnset.a A=AtomsK
llnset.n N=LLinesK
Assertion llnset KDN=xB|pApCx

Proof

Step Hyp Ref Expression
1 llnset.b B=BaseK
2 llnset.c C=K
3 llnset.a A=AtomsK
4 llnset.n N=LLinesK
5 elex KDKV
6 fveq2 k=KBasek=BaseK
7 6 1 eqtr4di k=KBasek=B
8 fveq2 k=KAtomsk=AtomsK
9 8 3 eqtr4di k=KAtomsk=A
10 fveq2 k=Kk=K
11 10 2 eqtr4di k=Kk=C
12 11 breqd k=KpkxpCx
13 9 12 rexeqbidv k=KpAtomskpkxpApCx
14 7 13 rabeqbidv k=KxBasek|pAtomskpkx=xB|pApCx
15 df-llines LLines=kVxBasek|pAtomskpkx
16 1 fvexi BV
17 16 rabex xB|pApCxV
18 14 15 17 fvmpt KVLLinesK=xB|pApCx
19 4 18 eqtrid KVN=xB|pApCx
20 5 19 syl KDN=xB|pApCx