Description: Equality deduction for line mirroring. Theorem 10.7 of Schwabhauser p. 89. (Contributed by Thierry Arnoux, 11-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ismid.p | |
|
ismid.d | |
||
ismid.i | |
||
ismid.g | |
||
ismid.1 | |
||
lmif.m | |
||
lmif.l | |
||
lmif.d | |
||
lmicl.1 | |
||
lmieq.c | |
||
lmieq.d | |
||
Assertion | lmieq | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ismid.p | |
|
2 | ismid.d | |
|
3 | ismid.i | |
|
4 | ismid.g | |
|
5 | ismid.1 | |
|
6 | lmif.m | |
|
7 | lmif.l | |
|
8 | lmif.d | |
|
9 | lmicl.1 | |
|
10 | lmieq.c | |
|
11 | lmieq.d | |
|
12 | fveqeq2 | |
|
13 | fveqeq2 | |
|
14 | 1 2 3 4 5 6 7 8 10 | lmicl | |
15 | 1 2 3 4 5 6 7 8 14 | lmireu | |
16 | eqidd | |
|
17 | 12 13 15 9 10 11 16 | reu2eqd | |