Metamath Proof Explorer


Theorem lmieq

Description: Equality deduction for line mirroring. Theorem 10.7 of Schwabhauser p. 89. (Contributed by Thierry Arnoux, 11-Dec-2019)

Ref Expression
Hypotheses ismid.p P=BaseG
ismid.d -˙=distG
ismid.i I=ItvG
ismid.g φG𝒢Tarski
ismid.1 φGDim𝒢2
lmif.m M=lInv𝒢GD
lmif.l L=Line𝒢G
lmif.d φDranL
lmicl.1 φAP
lmieq.c φBP
lmieq.d φMA=MB
Assertion lmieq φA=B

Proof

Step Hyp Ref Expression
1 ismid.p P=BaseG
2 ismid.d -˙=distG
3 ismid.i I=ItvG
4 ismid.g φG𝒢Tarski
5 ismid.1 φGDim𝒢2
6 lmif.m M=lInv𝒢GD
7 lmif.l L=Line𝒢G
8 lmif.d φDranL
9 lmicl.1 φAP
10 lmieq.c φBP
11 lmieq.d φMA=MB
12 fveqeq2 b=AMb=MBMA=MB
13 fveqeq2 b=BMb=MBMB=MB
14 1 2 3 4 5 6 7 8 10 lmicl φMBP
15 1 2 3 4 5 6 7 8 14 lmireu φ∃!bPMb=MB
16 eqidd φMB=MB
17 12 13 15 9 10 11 16 reu2eqd φA=B